
Kangaroo: Caching Billions of Tiny
Objects on Flash

Sara McAllister1
Benjamin Berg1, Julian Tutuncu-Macias1, Juncheng Yang1, Sathya Gunasekar2,

Jimmy Lu2, Daniel S. Berger3, Nathan Beckmann1, Gregory R. Ganger1

 1 Carnegie Mellon University

2 Facebook

 3 Microsoft Research / University of Washington

SOSP 2021
Wednesday, October 27, 2021

2

Metadata

Facebook social graph edges
~100 bytes

Social Graphs TweetsIoT Metadata
Microsoft Azure sensor metadata

~300 bytes
Twitter tweets average

<33 characters

Tiny objects are prevalent

Caching at scale

3

Application

Datacenter

Data request

Caching Layer Database Layer

C Cache Miss

Cache layers need to be large to:

1. lower average latency

2. keep load off of backend services

Flash is 100x cheaper per bit Larger caches

CCCCCCCC

Caching billions of tiny objects (~100 bytes) on flash

4

Open source1 and integrated into CacheLib2

1 github.com/saramcallister/Kangaroo 2 cachelib.org

Kangaroo reduces misses by 29%
while keeping writes and memory under production constraints

Too many flash writes

Large memory overhead
orPrior Work Wasted Money

https://github.com/saramcallister/Kangaroo
http://cachelib.org

Outline
1) Introduction

2) Caching on flash

3) Minimizing DRAM overhead

4) Kangaroo design

5) Results

5

Flash allows cheaper than DRAM, but

- Flash has limited write endurance
- Caches have to write in > 4 KB blocks

Most flash caches use a log-structured cache

Caching on flash Additional challenge

6

Log-structured Caches

7

Flashield (Eisenman NSDI ’19), FASTER (Chandramouli SIGMOD’18), RIPQ (Tang FAST’15)

Log-structured Caches

8

Flashield (Eisenman NSDI ’19), FASTER (Chandramouli SIGMOD’18), RIPQ (Tang FAST’15)

Log-structured Caches

9

Flashield (Eisenman NSDI ’19), FASTER (Chandramouli SIGMOD’18), RIPQ (Tang FAST’15)

+ Buffered writes minimize writes to flash

- Full in-memory index

Log-structured Caches

10

Flashield (Eisenman NSDI ’19), FASTER (Chandramouli SIGMOD’18), RIPQ (Tang FAST’15)

11

Metadata

Facebook social graph edges
~100 bytes

Social Graphs TweetsIoT Metdata
Microsoft Azure sensor metadata

~300 bytes
Twitter tweets average

<33 characters

Need to cache tiny objects

Tiny objects Large metadata overheads

12

4096-byte object

2048 bytes

30 bits / object metadata overhead

ObjectMetadata Overhead

.09% overhead

Flashield (Eisenman NSDI ’19)

Tiny objects Large metadata overheads

13

4096-byte object

2048 bytes

30 bits / object metadata overhead

Object

40 100-byte objects

Metadata Overhead

4% overhead

2 TB flash cache 75 GB memory overhead

.09% overhead

Flashield (Eisenman NSDI ’19)

Outline
1) Introduction

2) Caching on flash

3) Minimizing DRAM overhead

4) Kangaroo design

5) Results

14

Key ()

Low memory overhead Set-associative cache

15

CacheLib (Berg OSDI ’20)

Hash (Key ())

Set-Associative Cache

16

CacheLib (Berg OSDI ’20)

Set-Associative Cache

17

CacheLib (Berg OSDI ’20)

+ Low memory overhead

Set-Associative Cache

18

CacheLib (Berg OSDI ’20)

Set-Associative Cache

19

+ Low memory overhead

- Large write amplification (# bytes written / bytes requested)

~40x
4096 bytes
100 bytes =Write Amplification =

CacheLib (Berg OSDI ’20)

Prior work: Too much DRAM or too many writes

20Write Amplification (WA)

M
em

or
y

O
ve

rh
ea

d

Log-structured Cache

Set-associative Cache

Kangaroo spans the tradeoff

Production System

Outline
1) Introduction

2) Caching on flash

3) Minimizing DRAM overhead

4) Kangaroo design

5) Results

21

Kangaroo Overview

22

Set-associative Cache

Index

Log-structured Cache

KLog KSet

Inserting Objects in Kangaroo

23

Inserting Objects in Kangaroo

24

1) Insert to KLog via buffered write

(1)

Inserting Objects in Kangaroo

25

1) Insert to KLog via buffered write

2) Flush object from KLog to KSet

(1)

(2)

Inserting Objects in Kangaroo

26

1) Insert to KLog via buffered write

2) Flush object from KLog to KSet

3) Move all objects in KLog that map to the same set

(1)

(2)

(3)

Amortizing KSet flash writes using KLog
Two small objects halve write amplification (WA) to KSet

27

1 new object

2 new objects

KLog allows more time to find set collisions and amortize WA

Small KLog Large Probability of Collision

28

O
bj

ec
ts

 th
at

 h
av

e
a

KS
et

 c
ol

lis
io

n
(%

)

0

25

50

75

100

KLog Size (% of flash)
0 12.5 25 37.5 50

Small KLog Large Probability of Collision

29

O
bj

ec
ts

 th
at

 h
av

e
a

KS
et

 c
ol

lis
io

n
(%

)

0

25

50

75

100

KLog Size (% of flash)
0 12.5 25 37.5 50

More collisions = Lower Write Amplification

Kangaroo can trade off overheads

30

M
em

or
y

O
ve

rh
ea

d

Log-structured Cache

Set-associative Cache

Write Amplification (WA)

Kangaroo: Larger KLog = More Memory, Less WA

Production System

Threshold admission

31

Only rewrite a set in KSet if at least threshold, n, number of objects

We can choose which objects to discard based on write cost

Threshold admission improves WA

32

M
em

or
y

O
ve

rh
ea

d

Log-structured Cache

Set-associative Cache

Write Amplification (WA)

Kangaroo

Production
System

Miss ratio: Another tradeoff

33

M
em

or
y

O
ve

rh
ea

d

Log-structured Cache

Set-associative Cache

Write Amplification (WA)

Kangaroo

M
is

s
R

at
io

Write Amplification (WA)

Log-structured
Cache

Set-associative
Cache

Does discarding objects cause miss ratio losses?

Kangaroo

Production System

Readmission to KLog

34

Popular objects rewritten to KLog to minimize write cost

Readmission to KLog

35

Popular objects rewritten to KLog to minimize write cost

Popular?
No

Yes

Production System

Readmission improves miss ratio

36

M
em

or
y

O
ve

rh
ea

d

Write Amplification (WA)
M

is
s

R
at

io
Write Amplification (WA)

Log-structured
Cache

Log-structured Cache

Set-associative Cache

Kangaroo

Set-associative
Cache

Kangaroo

FIFO eviction policy

RRIParoo eviction in KSet helps miss ratio

Problem: Evict from set to make room for log objects while:

- Retaining more popular objects

- Maintaining small memory overhead

37

RRIParoo eviction in KSet helps miss ratio

Problem: Evict from set to make room for log objects while:

- Retaining more popular objects

- Maintaining small memory overhead

Solution: RRIParoo, a modified version of RRIP

- 1 bit DRAM/object in KSet with RRIParoo

38

RRIP (Jaleel ISCA’10)

RRIParoo improves miss ratio

39

M
em

or
y

O
ve

rh
ea

d

Write Amplification (WA)
M

is
s

R
at

io
Write Amplification (WA)

Log-structured
Cache

Log-structured Cache

Set-associative Cache

Kangaroo

Set-associative
Cache

Kangaroo

Production System

Outline
1) Introduction

2) Caching on flash

3) Minimizing DRAM overhead

4) Kangaroo design

5) Results

40

Kangaroo has best miss ratio

4141

0 1 2 3 4 5 6 7
DDys

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0
is

s
5D

tiR
Run on 2 TB flash drive with a 7-day Facebook trace with 16 GB DRAM and 3 DWPD

0 1 2 3 4 5 6 7
DDys

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0
is

s
5D

tiR
Kangaroo has best miss ratio

4242

Log-structured Cache

Severely DRAM constrained

Run on 2 TB flash drive with a 7-day Facebook trace with 16 GB DRAM and 3 DWPD

0 1 2 3 4 5 6 7
DDys

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0
is

s
5D

tiR
Kangaroo has best miss ratio

4343

Log-structured Cache

Write constrained

Set-associative Cache

Run on 2 TB flash drive with a 7-day Facebook trace with 16 GB DRAM and 3 DWPD

0 1 2 3 4 5 6 7
DDys

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0
is

s
5D

tiR
Kangaroo has best miss ratio

44

29% miss reduction over Set-associative Cache

44

Log-structured Cache

Set-associative Cache

Kangaroo

Run on 2 TB flash drive with a 7-day Facebook trace with 16 GB DRAM and 3 DWPD

0 20 40 60
D5A0 (GB)

0.0

0.1

0.2

0.3

0.4

0.5

0
is

s
5D

tiR

Varying DRAM budget

4545

Simulating caches under different DRAM budgets on a 2 TB flash drive with 3 DWPD

Production Constraint

0 20 40 60
D5A0 (GB)

0.0

0.1

0.2

0.3

0.4

0.5

0
is

s
5D

tiR

Varying DRAM budget

4646

Set-associative Cache

Set-associative Cache is not effected by DRAM

Simulating caches under different DRAM budgets on a 2 TB flash drive with 3 DWPD

Production Constraint

0 20 40 60
D5A0 (GB)

0.0

0.1

0.2

0.3

0.4

0.5

0
is

s
5D

tiR

Varying DRAM budget

4747

Set-associative Cache

Simulating caches under different DRAM budgets on a 2 TB flash drive with 3 DWPD

Production Constraint

Log-structured Cache is very DRAM constrained

Log-structured Cache

0 20 40 60
D5A0 (GB)

0.0

0.1

0.2

0.3

0.4

0.5

0
is

s
5D

tiR

Varying DRAM budget

4848

Log-structured Cache
Set-associative Cache

Kangaroo

Simulating caches under different DRAM budgets on a 2 TB flash drive with 3 DWPD

Production Constraint

Kangaroo minimally effected by DRAM

Varying write budget

4949

Simulating caches under different write budgets on a 2 TB flash drive with 16 GB memory

0 50 100
Avg. Device WriWe 5DWe (0B/s)

0.0

0.1

0.2

0.3

0.4

0.5

0
is

s
5D

WiR

Production Constraint

0 50 100
Avg. Device WriWe 5DWe (0B/s)

0.0

0.1

0.2

0.3

0.4

0.5

0
is

s
5D

WiR

Varying write budget

5050

Log-structured Cache

Simulating caches under different write budgets on a 2 TB flash drive with 16 GB memory
Production Constraint

DRAM constrained for most write rates

0 50 100
Avg. Device WriWe 5DWe (0B/s)

0.0

0.1

0.2

0.3

0.4

0.5

0
is

s
5D

WiR

Varying write budget

5151

Log-structured Cache
Set-associative Cache

Kangaroo

Simulating caches under different write budgets on a 2 TB flash drive with 16 GB memory
Production Constraint

A flash cache for tiny objects that has:

1. Write rate within bounds for device lifetime by amortizing write costs

2. Low memory metadata overhead at 7.0 bits/object

3. 29% decrease in misses over than competitors

And responds well to changes in system parameters

See paper for more details including:

- KLog’s partitioned index providing >3.9x DRAM reduction

- Kangaroo's Pareto-optimality on Twitter traces

- Kangaroo’s test deployment in production at Facebook

52

Kangaroo: Caching Billions of Tiny Objects on Flash

A flash cache for tiny objects that has:

1. Write rate within bounds for device lifetime by amortizing write costs

2. Low memory metadata overhead at 7.0 bits/object

3. 29% decrease in misses over than competitors

And responds well to changes in system parameters

Acknowledgements
Thanks to the CacheLib team at Facebook (cachelib.org) and
both Facebook and Twitter for sharing traces with us.

Kangaroo: Caching Billions of Tiny Objects on Flash

http://cachelib.org

