FairyWREN: A Sustainable Cache for Write-Read-Erase Interfaces

Sara McAllister

CMU #UNC Chapel Hill *Microsoft

Carnegie Mellon Parallel Data Laboratory

Sherry (Yucong) Wang, Benjamin Berg[#], Daniel S. Berger^{*}, George Amvrosiadis, Nathan Beckmann, Gregory R. Ganger

OSDI 2024

Datacenter emissions need to be curtailed

Datacenters are projected to emit >33% global emissions by 2050

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

ACM TechBrief - Computing and Climate Change '21

40% of server emissions are storage

Lyu HotCarbon '23

FairyWREN: Enabling Sustainable Caching

- 1) Find that current flash caches have unnecessarily high emissions:
 - Cannot leverage longer lifetimes on denser flash
 - Or rely on too much DRAM
- 2) Describe Write-Read-Erase iNterfaces enable controlling all writes
- 3) FairyWREN leverages WREN to lowers writes by nest packing
- 4) Reduce writes 12.5x over prior flash caches
- 5) Enables low-DRAM, long lifetime, dense flash caching to achieve:

33% reduction in flash emissions

Flash cache emissions are mostly embodied

Operational Emissions

Emissions from running the datacenter

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Embodied Emissions

Emissions from manufacturing, transportation, raw materials, HW disposal

Flash cache emissions are mostly embodied

Embodied Emissions

Emissions from manufacturing, transportation, raw materials, HW disposal

61% of datacenter embodied emissions are storage

Carnegie Mellon

Parallel Data Laboratory

http://www.pdl.cmu.edu/

Projected to be 82% of emissions

Chasing Carbon - Gupta HPCA 2021

GreenSKU - Wang ISCA '24

Flash caching: Need low DRAM overhead

Carnegie Mellon Parallel Data Laboratory

Flash caching: Need low DRAM overhead

30 bits / object metadata overhead

Flashield (Eisenman NSDI '19)

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

2 TB flash cache → 75 GB memory overhead

Flash caching: Need low DRAM overhead

30 bits / object metadata overhead

Flashield (Eisenman NSDI '19)

Sustainable flash cache constraints: 1) Need a low DRAM overhead solution

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

2 TB flash cache → 75 GB memory overhead

Flash has limited write endurance before wearout

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Write Rate = _____ Capacity X Write Endurance **Desired Lifetime**

Caching on flash → Write constraint

Flash has limited write endurance before wearout

- Capacity X Write Endurance Write Rate = **Desired Lifetime** 2 TB Write Rate = ★ 3000 writes/cell 3 years

Carnegie Mellon Parallel Data Laboratory

Caching on flash \rightarrow Write constraint

Flash has limited write endurance before wearout

- **Desired Lifetime** 2 TB Write Rate = ------★ 3000 writes/cell
- 3 years
 - ≈ 63 MB/s

Strategies to lower emissions will lower write rate

Carnegie Mellon Parallel Data Laboratory

Longer Lifetimes — More Write Constrained

Longer device lifetimes amortize embodied emissions

Carnegie Mellon Parallel Data Laboratory

Longer Lifetimes — More Write Constrained

Longer device lifetimes amortize embodied emissions

Carnegie Mellon Parallel Data Laboratory

Denser Flash — More Write Constrained

Less HW lowers embodied emissions

Carnegie Mellon Parallel Data Laboratory

https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/, WOM-v Codes (Jaffer FAST '22)

Denser Flash — More Write Constrained

Less HW lowers embodied emissions

Carnegie Mellon Parallel Data Laboratory

https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/, WOM-v Codes (Jaffer FAST '22)

Less HW lowers embodied emissions

Sustainable flash cache constraints: 1) Need a low DRAM overhead solution 2) Need low writes to achieve extended lifetime on dense flash

Carnegie Mellon Parallel Data Laboratory

https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/, WOM-v Codes (Jaffer FAST '22)

http://www.pdl.cmu.edu/

Denser Flash \rightarrow More Write Constrained

Logical-Block-Addressable Devices (LBAD)

Carnegie Mellon Parallel Data Laboratory

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

LBAD devices require device GC

Low DRAM caches use hashing creating random writes

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

LBAD devices require device GC

Low DRAM caches use hashing creating random writes

LBAD devices require device GC

Carnegie Mellon Parallel Data Laboratory

LBAD devices require device GC

LBAD devices require device GC

Write-Read-Erase iNterfaces (WREN)

Erase Unit

Carnegie Mellon Parallel Data Laboratory

Write-Read-Erase iNterfaces (WREN)

Carnegie Mellon Parallel Data Laboratory

Write-Read-Erase iNterfaces (WREN)

WREN Interfaces (ZNS, FDP) allow caches to control all writes

Carnegie Mellon

Parallel Data Laboratory

FairyWREN: Leveraging control over erases

Carnegie Mellon

Parallel Data Laboratory

http://www.pdl.cmu.edu/

Small object cache is main source of writes, based on Kangaroo

McAllister SOSP '21

FairyWREN: Leveraging control over erases

Carnegie Mellon

Parallel Data Laboratory

http://www.pdl.cmu.edu/

Small object cache is main source of writes, based on Kangaroo

McAllister SOSP '21

Cache Logic

Victim Segment

Garbage Collection

Victim EU ...

Carnegie Mellon Parallel Data Laboratory

Carnegie Mellon Parallel Data Laboratory

Carnegie Mellon Parallel Data Laboratory

Nest packing reduces writes by 3.7x

Carnegie Mellon Parallel Data Laboratory

Other contributions in FairyWREN

Carnegie Mellon Parallel Data Laboratory

- Write improvement of large-small object separation
- Hot-cold separation within sets
 - 3.4x write reduction
- Sliced log design leveraging double buffering 8.3 bits/object memory overhead

FairyWREN cuts writes by 12.5x

Carnegie Mellon Parallel Data Laboratory

1.5	2.0	2.5
Days		

FairyWREN cuts writes by 12.5x

Carnegie Mellon Parallel Data Laboratory

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Caching server emissions for 6 year lifetime, 30% miss ratio target on a Twitter trace

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Caching server emissions for 6 year lifetime, 30% miss ratio target on a Twitter trace

Minimum Writes (+): No write amplification, no DRAM overhead

Carnegie Mellon

Parallel Data Laboratory

http://www.pdl.cmu.edu/

Caching server emissions for 6 year lifetime, 30% miss ratio target on a Twitter trace

Flashield (V): No write amplification, too much DRAM

Carnegie Mellon

Parallel Data Laboratory

http://www.pdl.cmu.edu/

Caching server emissions for 6 year lifetime, 30% miss ratio target on a Twitter trace

Kangaroo (M): Too many writes with sustainable flash trends

FairyWREN: 33% reduction in flash emissions

Caching server emissions for 6 year lifetime, 30% miss ratio target on a Twitter trace

Carnegie Mellon Parallel Data Laboratory

FairyWREN: Enabling Sustainable Caching

- 1) Find that current flash caches have unnecessarily high emissions:
 - Cannot leverage longer lifetimes on denser flash
 - Or rely on too much DRAM
- 2) Describe Write-Read-Erase iNterfaces enable controlling all writes
- 3) FairyWREN leverages WREN to lowers writes by nest packing
- 4) Reduce writes 12.5x over prior flash caches
- 5) Enables low-DRAM, long lifetime, dense flash caching to achieve:

33% reduction in flash emissions

