Toward Sustainable Datacenters through
Efficient Data Retrieval

Sara McAllister

CMU-CS-25-126
August 2025

Computer Science Department
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Nathan Beckmann, Co-Chair
Gregory R. Ganger, Co-Chair
George Amvrosiadis
Daniel S. Berger, Microsoft Azure & University of Washington
Margo Seltzer, University of British Columbia

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (©) 2025 Sara McAllister

This work is supported by the National Science Foundation under award numbers, CNS-2402838 and
CMMI-1938909, and CSR-1763701, as well as a National Defense Science and Engineering Graduate (ND-
SEG) Fellowship and a Siebel Scholarship.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Datacenters, sustainability, storage, caching, flash, hard disk drives

To my grandmother, Jane, who showed me that anyone can be a computer scientist and
to my parents, who encouraged me to follow my dreams.

v

Abstract

Datacenters are projected to account for 33% of the global carbon emis-
sions by 2050. As datacenters increasingly rely on renewable energy for power,
the majority of datacenter emissions will be embodied — emissions from life-
cycle stages including acquiring raw materials, manufacturing, transportation,
and disposal. To reach the ambitious emission reduction goals set by both
companies and governments, datacenters need to reduce emissions throughout
their operations, including (and particularly relevant for this thesis) the stor-
age system. Unfortunately, while data storage and retrieval systems are large
contributors to embodied emissions, reducing their embodied emissions have
largely been overlooked.

This dissertation addresses how to reduce emissions in data retrieval for
large-scale storage systems. These storage systems can reduce their carbon
footprint by enabling storage devices to have longer lifetimes and use denser
media. However, storage hardware’s IO limits combined with software’s un-
necessary additional 10 often severely restrict emission reductions, or at worse
cause increased emissions. Thus, this thesis focuses on reducing 1O in several
parts of the storage stack to enable efficient and sustainable data retrieval.

First, this dissertation addresses the sustainability of flash caching, a criti-
cal layer in datacenter storage systems that is limited by flash write endurance.
This improvement results from two caching systems: Kangaroo and Fairy-
WREN. Together, these caches dramatically reduce writes by over 28x, al-
lowing flash devices to use denser flash for longer lifetimes, ultimately reduc-
ing emissions. Then, this thesis enables more sustainable bulk storage, where
bandwidth limitations prevent deployment of denser HDDs. Declarative 10,
a new interface for distributed storage, empowers the storage system to elim-
inate duplicate 10 accesses in maintenance tasks through exposing the time-
and order-flexibility in maintenance tasks. This work enables deployment of
larger HDDs, further reducing emissions from storage systems.

vi

Acknowledgments

Getting my doctorate was a long and hard journey. I would not have been
able to do it without the many people who supported me throughout the jour-
ney, including my advisors, family, collaborators, mentors, and friends. There’s
too many of you all to mention everyone, but I am deeply thankful that you
are all in my life.

Thanks first and foremost to my advisors: Nathan Beckmann and Greg
Ganger. I could not have asked for better advisors — you helped me figure
out every stage of PhD and set me up to succeed. You were both always there
to the questions that came up as I went through the PhD. I hope that I can
live up to both of your examples when I advise students. Nathan, thanks for
helping me figure out how to craft a compelling research story and encouraging
me to discover the more fundamental math principles that underline my work
(and for making sure I appropriately used m-dashes instead of n-dashes). I also
appreciate your strong support of my work to build a more inclusive program.
Greg, thanks for your wealth of wisdom. I am continually impressed at your
ability to find very on-point pieces of advice to give at each stage of my PhD,
whether that be refocusing me on research, instilling confidence, or just that
the text on my slides is too small.

I also want to thank the other members of my committee: George Amvrosiadis,
Daniel Berger, and Margo Seltzer. George, thanks for joining the team starting
with FairyWREN and always having sound advice on research and beyond.
Daniel, I am grateful that we met when you were still a post-doc at CMU. You
showed me the ropes of how to do systems research, and it has been a pleasure
continuing to work with you and brainstorming about fun research ideas. And
finally, but not least, thanks to Margo for agreeing to join my committee even
though we had only met briefly at SOSP. You have been an invaluable source
of feedback on my research and encouragement as I have gone through the last
stage of my PhD and applying to academic jobs.

I also need to thank all my collaborators. I believe systems research often
requires a group and I enjoyed working with all of you. Ben Berg, for helping
me on research throughout the PhD and always helping out when I got stuck
with mathematical modeling. Thanks to Sanjith Athlur, Tim Kim, and Theo
Gregersen for going on the Declarative IO adventure with me. Thanks also
all my co-authors for the work that ended up in this thesis who I have not
yet mentioned: Ricardo Bianchini, Yiwei Chen, Rodrigo Fonseca, Kali Frost,
Sathya Gunasekar, Saurabh Kadekodi, Fiodar Kazhamiaka, Jimmy Lu, Sarvesh
Tandon, Julian Tutuncu-Macias, Arif Merchant, Aaron Ogus, Maneesh Sah,
Rashmi Vinayak, Lucy Wang, Sherry Wang, and Juncheng Yang. To Sophia
Cao, Akshath Karanam, and all the other students I have had the pleasure to
work with throughout my PhD, meeting with you all was always a fun part of
my week.

Thanks to everyone in industry who have given me feedback about this

research, including but by no means limited to Mike Allison, Matias Bjorling,
Javier Gonzalez, Brian Gold, Hans Holmberg, Ajay Joshi, and Ross Stenfort. I
thank the members and companies of the PDL Consortium (Amazon, Google,
Hitachi, Honda, IBM Research, Intel, Jane Street, Meta, Microsoft Research,
Oracle, Pure Storage, Salesforce, Samsung, Two Sigma, Western Digital) for
their interest, insights, feedback, and support.

Thanks also to all the staff who have ensured that everything in CSD
kept running, including Deb Cavlovich, Jenn Landefeld, Matthew Stewart, and
Charlotte Yano. Thanks to Karen Lindenfelser. I do not know how PDL would
keep running without you, and thanks for making sure I always had the room
reservations, talk slots, and everything else I needed to keep my research run-
ning. Thanks also to Jason Boles, Bill Courtright, Chad Dougherty, Mitch
Franzos, and Joan Digney for helping me on everything from getting posters
together to ensuring the servers I needed were running with the correct hard-
ware. Thanks to all the CMU faculty who supported me, particularly as I
went onto the job market. Thanks to everyone in PDL, CORGi group, and
architecture lunch for the great feedback on research.

I also want to thank those who helped me get to CMU. Thanks to Geoft
Kuenning who inspired me to pursue systems, supported trips to my first couple
systems conferences, and introduced me to many people who are now my peers.
Thanks to Don Porter for taking a chance on me when I was an undergraduate
student who was tackling systems research for the first time. Thanks also to
Colleen Lewis who helped me learn more about CS research and encouraged
me to not limit where I applied for during the PhD application cycle, including
recommending that I apply to CMU.

I also cannot leave out the invaluable support my friends have been through-
out the PhD. I would not have made it through without you all. Bailey Flani-
gan, Ananya Joshi, and Catalina Vajiac, thanks for being my accomplices in
this PhD journey. I will forever be impressed by what we accomplished to-
gether. Ray Ware, thanks for always being in to play more board games, there
is no better board game buddy. Jennifer Brana, Rose Silver, Naama Ben-David,
Katherine Kosaian, I could wish for no better office mates, and I would not have
made it through without all your support. Thank you to Jessie Groson who
was always on hand with either a meme or listening ear to get us both through
another tough week. Dorian Chan, Justin Raizes, and Hugo Sadok, thank you
for the good times from our first year on. Thanks also to everyone I have met
in Pittsburgh through improv, you helped keep me sane throughout my PhD.

I also want to thank all my friends outside of Pittsburgh. Thanks to my
Mudd crew of Charles Dawson, Maggie Gelber, Camille Goldman, Katie Gru-
enhagen, Alex Quinn, and Lydia Sylla for all the weekend chats and fall folliage
trips. Maya Josyula, thank you for being a steadfast friend from when we met
in kindergarten.

Last, thanks to my family — my parents, Lauri and Curtis, and my brother
David. Thanks for always being there for me and encouraging me to ask ques-

viii

tions and discover answers for them. Dad, thanks for encouraging me to try
computer science even when I thought I would never choose it as a career.
Mom, thanks for always being a source of support and inspiration, and starting
my journey in research early by giving me some “light” reading on the latest flu
research in high school. David, thanks for all the late night debates and keeping
me up to date on what is happening in machine learning. Thanks also to my
extended family for always supporting my journey through yet more years of
school and specifically to my grandmother, Jane, for listening to all my PhD
adventures and always believing in me. And finally, thanks to Bear, the best
pandemic puppy.

X

Contents

1 Introduction

1.1 Overview of Contributions 0L
1.1.1 Storage emissions (Ch. 3): What they are and how to reduce them .
1.1.2 Kangaroo (Ch. 4): Caching Billions of Tiny Objects in Flash
1.1.3 FairyWREN (Ch. 5): A Sustainable Cache with Write-Read-Erase

Flash Interfaces
1.1.4 Declarative IO (Ch. 6): Scaling the IO-per-TB wall in Bulk Storage

Background

2.1 Data retrieval in the datacenter 0oL

2.2 Caching in the datacenter,
2.2.1 Tiny objects are important and numerous
2.2.2 Caching tiny objects Lo
2.2.3 Flash Solid State Drives (SSDs)
2.2.4 Challenges in flash caching
2.2.5 Shortcomings of existing solutions

2.3 Bulkstorage
2.3.1 Hard-disk drives. o
2.3.2 How do we quantify IO on disk?
2.3.3 Higher-capacity HDDs are increasingly IO0-bound
2.3.4 10 demand in distributed storage systems

2.4 Datacenter sustainability
2.4.1 Prior work on reducing storage emissions
2.4.2 Prior solutions to reduce compute emissions

Reducing storage emissions results in IO limitations

3.1 Where do storage emissions come from?
3.1.1 Operational emissions
3.1.2 Embodied emissions

3.2 How can datacenters reduce storage emissions?
3.2.1 Denser and longer lifetimes to reduce flash emissions
3.2.2 10-per-capacity wall limits HDDs

x1

w w w -~

=~

© © 0o I N

10
11
14
15
16
16
17
18
19
20
21

4 Kangaroo: Caching Billions of Tiny Objects on Flash 29

4.1 Kangaroo Overview and Motivation 31
4.2 Theoretical Foundations of Kangaroo 33
4.2.1 Baseline set-associative cache 35
4.2.2 Add KLog, no admission policies 36
4.2.3 Add threshold admission before KSet 38
4.2.4 Add probabilistic admission before KLog 39
4.2.5 Modeling resultso 40
4.3 Kangaroo Design Lo 41
4.3.1 Pre-flash admission to KLog 41
432 KLog.« . 41
4.3.3 KLog — KSet: Minimizing flash writes 44
4.3.4 KSet 44
4.4 Experimental Methodology L. 46
4.4.1 Kangaroo implementation and parameterization 47
4.4.2 Comparisons 47
4.4.3 Simulation 47
444 Workloads o 48
4.4.5 Metrics L 48
4.4.6 Scaling traces 48
4.5 Evaluation 52

4.5.1 Main result: Kangaroo significantly reduces misses vs. prior cache
designs under realistic constraintso 52
4.5.2 Kangaroo performs well as constraints change 53
4.5.3 Parameter sensitivity and benefit attribution 56
4.5.4 Production deployment test 60

5 FairyWREN: A Sustainable Cache for Emerging Write-Read-Erase Flash

Interfaces 61
5.1 Sustainable design constraints in flash caching 64
5.2 Write-Read-Erase iNterfaces (WREN) 65
5.2.1 Today’s interface is LBAD 65
5.2.2 Challenges of new interface design 65
5.2.3 What makes an interface WREN? 66
5.2.4 WREN alone is not a cure for wa 67
5.3 FairyWREN Overview and Design, 69
5.3.1 Overview 69
5.3.2 The LOC 70
5.3.3 The SOC 71
5.3.4 Optimizing the SOC, 72
5.4 Evaluation 78
5.4.1 Experimental setupo 78
5.4.2 Carbon emissions and cost model 79
5.4.3 Carbon emissions of flash caches 80

xil

5.4.4 On-flash experiments 81

5.4.5 FairyWREN reduces carbon emissions 82

5.4.6 Where are benefits coming from? 85

5.4.7 Operating on a fixed flash device 87

5.5 Related Worko 89

6 Scaling the 10-per-TB wall with Declarative 10 91
6.1 Maintenance tasks oL 93
6.1.1 Maintenance tasks are essential 94

6.1.2 Challenges in reducing maintenance 10 96

6.1.3 Opportunity: Maintenance tasks are flexible 97

6.2 Declarative IO 98
6.2.1 Interface Overview 98

6.2.2 Interface Details. 99

6.2.3 Converting maintenance tasks to Declarative IO 100

6.2.4 Consistency with Declarative IO 102

6.3 DINGOS Design 104
6.3.1 DINGOS Overview 104

6.3.2 Scheduling in DINGOS’s IO Planner 105

6.3.3 DINGOS’s dispatcher minimizes cache space 106

6.4 Evaluation 107
6.4.1 DINGOSontopof HDFS 107

6.4.2 DINGOS in Simulation L. 109

6.5 Related Work 112

7 Conclusion 115
7.1 Future work 116
7.1.1 Flash caching 116

7.1.2 Declarative IO 117

7.1.3 Sustainable storage 118
Bibliography 121

xiil

Xiv

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
9.3
5.4
9.5
5.6
5.7

Datacenter storage overview. 8
Overview of caching at Meta 9
Cost of flash and DRAM over time 10
Flash architecture 12
Effect of over-provisioning on write amplification 13
HDD IO supply vs demand 17
IO demand across the datacenter 18
Operational and embodied emissions at Azure 19
Flash carbon emissions vs write rate 0. 26
HDDs bandwidth-per-TB is dropping 27
Overview of Kangaroo design and results 30
Looking up objects in Kangaroo, 32
Inserting and evicting objects in Kangaroo 32
Markov Model for Kangaroo 35
Modeled ALwA in Kangaroo with different KLog sizes 40
Modeled ALwA in Kangaroo with different thresholds 41
Overview of KLog operations 42
Kangaroo’s RRIParoo eviction policy 46
Miss ratio over timeo 52
Miss ratio vs device-level write rates 54
Miss ratio vs flash capacity 55
Miss ratio vs device size 56
Miss ratio vs average object sizeo 57
Sensitivity study on Kangaroo parameters 58
Production deployment of Kangaroo 59
Overview of FairyWREN results 63
DLWA for different EU sizes 69
Overview of FairyWREN architecture 70
Nest packing in FairyWREN’s small-object cache 72
FwSets architectureo 73
FwLog architecture 74
FwLog space overhead comparison 76

XV

0.8

2.9

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

FwLog with slicing 7

Caches’ carbon emissions breakdown 81
Kangaroo vs FairyWREN 81
Cost and emissions for different miss ratios 83
Emissions for different flash densities 83
Emissions for different lifetimeso 84
Emissions for different lifetimes and densities 85
Lifetimes vs miss ratios 85
FairyWREN benefit attribution 86
Miss ratio vs write rate vs write amplification 87
DRAM capacity vs miss ratioo 88
Declarative 10 exploits task flexibility to reduce 10 92
DINGOS architecture overview 93
Imperative 1O architecture L 94
declarecall 99
Supporting files in Declarative IO 100
Declarative scrubbingo 101
Declarative capacity balancing 101
Declarative LSM compaction 102
Block-file mappings 103
Block choice in scrubbing. oo 103
DINGOS overview. e 105
DINGOS scheduler 107
Declarative vs imperative 10 reads over time 108
CDF of blocks accessed by maintenance tasks 109
10 savings with different supply and demand 111
Cache size vs [O savingso 112

XVl

List of Tables

2.1

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4
2.5

6.1
6.2

SSD vs HDD Servers 16
Operational emissions at Azure 24
Embodied emissions at Azure oL 24
Variables in Kangaroomodel 0oL 34
DRAM overhead in Kangaroo 43
Kangaroo’s default parameters 47
Key parameters in trace scaling methodology 49
Comparison of FairyWREN vs. prior cache designs 64
Variables in analytical model of FIFO-+ 67
FairyWREN memory overhead 7
Experimental parameters 78
Flash density scaling factors 0. 79
Description of common maintenance tasks 95
Workload parameters 110

xXvii

Xviil

Chapter 1

Introduction

“Given the advancements in system energy efficiency and the increasing use of
renewable energy, most carbon emissions now come from infrastructure and the
hardware.”

Udit Gupta et al. [122]

ATACENTER CARBON EMISSIONS are on par with the aviation industry [155], and
D growing. In the next decade, datacenters will account for over 20% of the world’s
carbon emissions [138]. By 2050, datacenters may account for up to 33% of the world’s
carbon emissions [155]. To avoid this outcome, datacenters need to be more sustainable.

Both companies and governments are pushing to reduce datacenter emissions. In the
next few decades, many companies — including Amazon [6|, Google [13], Meta [34], and
Microsoft [186] — want to achieve Net Zero, i.e., greenhouse gas emissions close to zero.
Global government regulations are also requiring emissions reductions across industries,
such as the EU’s Fit for 55 which aims for a 55% reduction in EU emissions by 2030 and
climate-neutrality by 2050 [189).

Most emissions reduction efforts are focused on reducing datacenter energy usage and
its carbon footprint. Many datacenters are adopting renewable energy sources such as
solar and wind [34, 122, 173, 186]. Google, AWS, and Microsoft are expected to complete
their renewable-energy transition by 2030 [91, 139, 165]. However, this switch in energy
source does not reduce datacenters’ embodied emissions, the emissions produced by the
manufacture, transport, and disposal of datacenter components. Embodied emissions will
account for more than 80% of datacenter emissions once datacenters move to renewable
energy [122]. To continue reducing datacenters’ carbon footprint, datacenters’ embodied
emissions need to be reduced.

Why focus on storage? Existing work focuses primarily on reducing emissions of general-
purpose compute |39, 73, 122, 123, 230, 241, 248, 251|. This focus will reduce a datacenter’s
energy usage or operational emissions, but it fails to account for storage emissions. Re-
searchers and practitioners have frequently considered storage a less important source of
emissions. This could not be further from the truth.

Storage comprises a sizable portion of both operational and embodied carbon emissions
in hyperscale datacenters. For instance, Azure’s storage-related emissions — including

storage racks and local storage devices — make up 33% of operational and 61% of embodied
emissions [180, 251]. Storage racks alone account for 24% of operational and 45% of
embodied emissions [251]. Thus, as datacenters continue to target compute emissions
and deploy renewable energy, storage will dominate overall datacenter emissions due to
storage’s embodied emissions.

How can we reduce storage systems emissions? Unfortunately, we cannot just use
optimizations on compute emissions for storage, because storage has fundamentally dif-
ferent constraints, such as ensuring data durability and availability. While the high-level
techniques — including reducing power consumption, shifting power consumption to re-
gions and times where renewable energy is available |14, 39, 55, 207, 230, 255], using fewer
devices [81, 98, 99, 117, 223], and extending device lifetime [174, 241, 248, 249, 250] — still
apply to storage, they face different challenges and tradeoffs.

One primary difference is that storage has much higher embodied emissions than op-
erational emissions. Unlike compute, to reduce storage emissions, we need to focus on
reducing embodied emissions. There are two main strategies to reduce embodied emis-
sions: (1) extend the lifetime of devices and (2) reduce the quantity of hardware, which in
storage means using more dense storage technology to store the same amount of data with
fewer devices.

Storage emissions face an IO bottleneck. These emission-reduction strategies are not
without trade-offs. Most importantly and the focus of this thesis, these emission-reduction
strategies, for both flash and hard drive systems, reduce 10. For flash devices, the 10
bottleneck is writes. Flash wears out with each write, and eventually it becomes unusable.
Thus, writes limit the lifetime of flash devices. This limitation is more restrictive for denser
flash devices. Hard disk drives (HDDs) have a slightly different IO bottleneck — while they
are becoming denser, they do not have more IO-per-second available. Thus, these HDDs
are increasingly [O-bottlenecked, requiring more devices to achieve the same number of
reads and writes per stored bit — negating any emissions benefit of denser devices.

To reduce storage emissions, we need to reduce 10. How can we reduce 10 while main-
taining the performance of our storage system? This dissertation shows that redesigning
storage software to reduce IO is possible. We accomplish this IO reduction through in-
creasing the utility of each IO to the device, e.g. having each read or write fulfill multiple
objectives. Unfortunately, many of these optimizations are limited today by the 1O in-
terfaces — both at the device level and the distributed storage system level. Therefore,
this dissertation considers what new interfaces are needed to support sustainable storage
systems. More specifically, this dissertation demonstrates that:

Thesis Statement: Reducing 10, through increasing the utility of each read and write
and developing more expressive and symbiotic interfaces, enables more sustainable storage
systems in datacenters.

To support this statement, this dissertation first demonstrates that storage is essential
to datacenter sustainability and that IO limits storage sustainability for both flash and hard
disk drives (Ch. 3). Then, we introduce the flash cache, Kangaroo, which shows that we

2

can increase write utility in flash caches through leveraging hash collisions, reduces writes
without sacrificing miss ratio (Ch. 4). Next, we discuss the flash cache, FairyWREN, which
illustrates that to further reduce writes, we need to change the interface to flash devices
and build a cache to leverage those changes (Ch. 5). Together, Kangaroo and FairyWREN
enable flash caches with half of the emissions compared to prior work. Finally, we show
that the same principles of increasing 1O utility through better interfaces can be applied
to distributed storage systems with Declarative IO, which enables expressing flexibility to
reduce 10 from maintenance tasks (Ch. 6).

1.1 Overview of Contributions

The insights and contributions of this dissertation are summarized below.

1.1.1 Storage emissions (Ch. 3): What they are and how to reduce
them

We identify storage as a necessary target for emissions reductions and break down both
operational and embodied emissions in Azure’s storage, showing the impact of both SSD
and HDD storage servers. We then discuss how IO is a major limitation for both SSDs
and HDDs.

1.1.2 Kangaroo (Ch. 4): Caching Billions of Tiny Objects in Flash

Social networks, microblogs, and emerging sensing applications in the Internet of Things
(IoT) need to access tiny objects such as graph edges, text, and metadata. However,
tiny objects are uniquely challenging for flash caches, because the objects are orders-of-
magnitude smaller than the write size of flash, causing either write endurance problems or
requiring unreasonable memory overheads.

Prior flash caches. Existing cache designs either require too many writes or too much
memory. Log-structured caches [105] minimize writes by storing all objects sequentially,
achieving close to the minimum writes. Unfortunately, these caches need a full index to
quickly find objects, which, even when highly optimized, requires too much DRAM to be
sustainable. Set-associative caches [60] minimize DRAM indexing by mapping objects to
fixed size locations, “sets”, on flash using a hash of the object’s key. However, set-associative
caches suffer from too many writes: they have to write 4 KB for every 100 byte object,
causing a write amplification of 40x. These additional writes lead to early wear-out due to
flash’s limited write endurance.

Kangaroo [178, 179]. To optimize both writes and DRAM usage, we developed a hybrid
flash cache called Kangaroo that combines prior designs to get the best of both worlds.
Kangaroo’s main insight is that a small log-structured cache (KLog) minimizes write am-
plification by amortizing set writes in a large set-associative cache (KSets) over multiple
objects. Kangaroo first writes to KLog, taking advantage of its low write amplification.

Once KLog fills, Kangaroo flushes each object in a log segment to the set in KSets corre-
sponding to the key’s hashed value along with all other objects in KLog that map to the
same set. Essentially, Kangaroo reduces writes by creating hash collisions. Since Kanga-
roo is a cache, if there are not enough collisions for a set, objects are evicted. Kangaroo’s
design has a very low memory overhead of 7.0 bits/obj, a 4.3x improvement over prior
work.

Thus, Kangaroo has both low memory overhead and low write amplification, unlike
prior systems. Avoiding both of these pitfalls causes Kangaroo to have 29% fewer misses
under realistic workloads. The deployment of Kangaroo on production servers at Meta
showed a 38% reduction in writes compared to their production tiny-object cache.

1.1.3 FairyWREN (Ch. 5): A Sustainable Cache with Write-Read-
Erase Flash Interfaces

While Kangaroo greatly reduces writes without a large memory overhead, long-lived and
dense flash requires further write reductions. Unfortunately, Kangaroo cannot address
the main remaining source of writes: rewrites inside the flash device. Theses writes exist
because flash’s current interface, Logical-Block-Addressable Devices (LBAD), allows 4 KB
writes even though flash’s erase granularity is closer to a gigabyte (flash must erase before
overwriting data). This mismatch requires the device to reclaim space through garbage
collection. Garbage collection leads to uncontrollable writes, particularly bad in caches
where every write is a decision on whether to keep objects or evict them.

Flash interfaces. New emerging flash SSD interfaces, such as ZNS [66] and FDP [44],
allow closer integration of host-level software and flash management. Importantly, these
interfaces expose erase operations. We introduce Write-Read-Erase iNterfaces (WREN), an
interface categorization that captures the necessary operations for sustainable flash caches.
However, WREN does not immediately reduce writes — it only gives the cache control of
all writes.

FairyWREN [177, 181]. FairyWREN combines previously device-controlled garbage col-
lection and the caching logic in Kangaroo into one operation called nesting, reducing writes.
With several other optimizations, FairyWREN decreases writes 12.5x over Kangaroo. This
write reduction translates to a 33% decrease in flash emissions over Kangaroo and a >50%
reduction in total emissions over log-structured caches, the prior state-of-the-art.

1.1.4 Declarative IO (Ch. 6): Scaling the IO-per-TB wall in Bulk
Storage

Most storage devices are in bulk storage, where datacenters use hundreds of thousands
of hard disk drives. These hard disk drives’ capacities are greatly increasing due to new
technology — from <20 TB in 2020 to an expected >50 TB in 2025. Deploying denser
drives promises to reduce embodied emissions. Unfortunately, these drives’ bandwidth and
their IOPS per drive has not increased to match their capacity. This “IO wall” prevents the

4

adoption of denser drives. To deploy these more sustainable, denser drives, bulk storage
needs to reduce I0.

Most bulk storage IO is maintenance. Surprisingly, most 10 does not come from
storage users, since most of this user 10 is highly cacheable. Rather, my work identifies
maintenance tasks as the primary source of 10 in bulk storage, based on discussions with
hyperscalars including Google, Meta, and Microsoft. These tasks are essential, because
they ensure data is stored accessibly and reliably with little space overhead. For instance,
scrubbing requires reading every byte of data every few months to ensure the data still ex-
ists. Decreasing the frequency of scrubbing increases the risk of data loss, an unacceptable
outcome for a storage system. Making the problem worse, maintenance tasks come from
throughout the datacenter: from databases (e.g., compaction, table statistics), to object
stores (e.g., transcoding, object checksums), to distributed file systems (e.g., scrubbing,
rebalancing, reconstruction), to disks (e.g., garbage collection).

Insight: Imperative IO destroys flexibility. Today, maintenance tasks use an imper-
ative interface that allows tasks to request only a specific piece of data now, i.e., read this
block now. This unnecessarily limits these tasks” inherent time and order flexibility. For
instance, scrubbing must currently be implemented via sequential requests to read individ-
ual blocks rather than a directive to read a set of blocks at some time in the next month.
If the imperative interface did not force these tasks to eliminate their flexibility, there is
massive potential for overlap between these tasks. By coordinating IO, storage systems
could issue a single command to

Declarative 10: Exposing and exploiting IO overlap to enable denser HDDs.
To reduce bulk storage 10, we introduce a new interface, Declarative 10, that allows
maintenance tasks to declare that they need to read a set of data by a target deadline.
Returning to the scrubbing example, rather than writing a large loop through all data,
declarative 10 allows scrubbing to declare that it needs all data every couple months.
Other tasks, such as re-encoding and garbage collection, can do the same. Then, when
DINGOS, our implementation of a system to support Declarative 10, decides it is a good
time to read a piece of data for garbage collection, scrubbing and any other declarative
tasks get that data for free. DINGOS demonstrates that Declarative 1O is a promising new
direction to reduce disk IO in bulk storage, reducing read 10 by 40% relative to imperative
IO for maintenance tasks.

Chapter 2

Background

“Data really powers everything that we do.”

Jeff Weiner

TORAGE is a critical component of a datacenter. Cloud users rely on storage to guarantee
S access to their data across applications from machine learning to social media and
beyond. This chapter provides an overview of the storage stack in a datacenter, from the
application to bulk storage (Sec. 2.1). Then, it provides a more detailed description of
caching, particularly flash caching, in the datacenter (Sec. 2.2) and bulk storage systems
(Sec. 2.3) along with their design challenges. Finally, it discusses work on increasing
datacenter sustainability and its relation to storage (Sec. 2.4).

2.1 Data retrieval in the datacenter

Cloud storage is predominantly backed by distributed storage systems. Most data is per-
manently stored in storage servers grouped into storage racks, separated from compute.
Datacenters deploy a complex, interconnected collection of services to manage its data,
including caching, bulk storage, and data management services (Fig. 2.1). Generally, re-
quests from applications first encounter a data management service (i.e., data lakehouse or
database), which then leads to storage — both more caches and eventually bulk storage.

Data Management Services. Data management services exist to organize data and
make it accessible to applications. These services include table stores, data warehouses, and
data lakes. In addition to sending IO to storage based on application requests, these services
also send IO to storage to manage their data. For example, many data management services
deploy log-structured merge trees [20, 24, 208, 210, 252], which require compacting their
data repeatedly to ensure their performance and to achieve reasonable space utilization.

Caching layers (Sec. 2.2). Caches exist throughout the datacenter to minimize the
latency of services and reduce the load on backend services, including data management
services and bulk storage. Caches farther from user requests need to be large in order
to effectively cache requests since much of the locality in requests is removed by earlier

Um0,
Q)
&)—f o
0!.1‘. Databases
oid”
> A e 4 >
Al
Lakehouse
B]
Application Data Management Caches Bulk Storage

Figure 2.1: Datacenter storage overview. When applications need data, they typi-
cally first go to a data management service, then to the caches, and finally to bulk storage.
For this thesis, we focus primarily on storage — the caching and bulk storage layers.

caching stages. To accommodate these large caches, many datacenters deploy flash caching
as their last layer of caching before going to storage |60, 68, 69, 105, 266].

Bulk Storage (Sec. 2.3). Data is stored for long-term retention in bulk storage. Bulk
storage consists primarily of 100Ks of HDDs [119, 194, 224, 254|, which are together com-
bined into a single storage system. The bulk storage system generally stores large blocks of
data spread across many devices and servers, using a metadata service to track where data
resides and any other metadata about the blocks. Since bulk storage needs to retain data
until it is deleted (usually years later if it is ever deleted), it also runs many maintenance
services, from scrubbing [132, 190, 215] to reconstruction [82, 121] to load balancing to
transcoding [142, 144]. These maintenance tasks result in 10 to the hard drives.

2.2 Caching in the datacenter

Caching is essential to the performance of large-scale storage systems and thus caches are
prevalent (as seen in Fig. 2.2, which shows caching at Meta.). Caches are used to both
reduce the latency of data, since caches are often physically closer to applications and
on lower latency media. They also reduce the load sent to lower layers of the storage
stack, such as bulk storage. Specifically, in this dissertation, we focus on the last layer of
caches — right before bulk storage. These caches are typically large (thousands of servers
each with at least several TB of flash), flash-based caches that see a mix of workloads,
including key-value stores, data management services, and more. One notable feature of
these workloads is that they often contain many tiny objects (objects around 100 bytes in
size).

In this section, we first discuss the presence of tiny objects in caching workloads
(Sec. 2.2.1). Then, we examine why caching on flash makes sense at a datacenter scale
(Sec. 2.2.2) and describe, at a high-level, what flash SSDs are and their limitations (Sec. 2.2.3).
Then, we discuss the challenges of caching tiny objects in flash (Sec. 2.2.4), particularly

8

CDN caches Media caches Storage

N C RS i : Photo caches
- i € !Scaler DV\A /
f Counter caches | [Je— 9 -
[Vi - Sotes _Video Encoder Database
® . Key-value caches '\‘ ~.Graph caches - caches
‘s E Vs i iTime
e.f%?éon : Content | | line DN.H
' : E Recom i i
| Server DH ¢ ! mendations | FoIIowers

i info | T T >

Figure 2.2: Overview of caching at Meta. Caching is deployed in many different
services across Meta from the content delivery network, CDN, all the way back to stor-
age. [60]

how write amplification limits flash cache design. Finally, we discuss existing approaches
to caching tiny objects in flash and their shortcomings (Sec. 2.2.5).

2.2.1 Tiny objects are important and numerous

Tiny objects are prevalent in many large-scale systems:

e At Meta, small objects are prevalent in the Facebook social graph. For example, the
average social-graph edge size is under 100 B. Across edges, nodes, and other objects,
the average object size is less than 700 B [60, 71|. This has led to the development
of a dedicated flash caching system for small objects [60].

e At Twitter, tweets are limited to 280 B, and the average tweet is less than 33 char-
acters [198]. Due to the massive and growing number of tweets, Twitter seeks a
cost-effective caching solution [263].

e At Microsoft Azure, sensor updates from IoT devices in Azure Streaming Analyt-
ics are a growing use case. Before an update can be processed (e.g., to trigger a
real-time action), the server must fetch metadata (the sensor’s unit of measurement,
geolocation, owner, etc.) with an average size of 300 B. For efficiency and availabil-
ity, it caches the most popular metadata [111]. Another use case arises in search
advertising, where Azure caches predictions and other results [160, 161].

Each of these systems accesses billions of objects that are each significantly less than
the 4 KB minimum write granularity of block-storage devices. For example, Facebook
records 1.5 billion users daily [27] and friendship connections alone account for hundreds
to thousands of edges per user |71, 243]. Twitter logs over 500 million new tweets per
day and serves over 190 million daily users [30]. While IoT update frequencies and ad
impressions are not publicly available, the number of connected devices is estimated to
have surpassed 50 billion in 2020 [94], and the average person was estimated to see 5,000
ads every day as early as 2007 [232].

2.2.2 Caching tiny objects

While individual objects in the above applications are tiny, application working sets on
individual servers still add up to TBs of data. To reduce throughput demands on back-

10.00 5 _,'A_A‘galﬂg‘_ -.m‘."ﬁh

-\.#r g~ b, ..
— S
@ 1,00
2 s «-DRAM
- et . * Flash
2 0.10 Rt ats oo,
o 0
0.01
2013 2015 2017 2019 2021 2023
Year

Figure 2.3: Cost of flash and DRAM over time. Cost for flash and DRAM over the
last 10 years [10, 12]|. Flash prices have decreased over 14, while DRAM prices have only
decreased by ~2x.

end data-management systems, applications rely on large-scale, cost-efficient caches, as a
single caching server can replace tens of backend servers [60]. Unfortunately, as described
below, current caching systems are inefficient for tiny objects. There is therefore a need
for caching systems optimized specifically for large numbers of tiny objects.

Why not just use memory? DRAM is expensive, both in terms of acquisition and power
cost per bit. DRAM often makes up 40% to 50% of server cost [163, 222, 236] and is no
longer scaling (Fig. 2.3). DRAM capacity is also often limited due to operational power
concerns. Moreover, DRAM is often in high demand, so all applications are encouraged
to minimize DRAM usage. For example, the trend in recent years at Meta is towards
less DRAM and more flash per server [60, 236]. DRAM also has a large embodied car-
bon footprint and has large operational emissions due to requiring up to half of system
power [123].

Why flash? Flash is cheaper per-bit, embodies 12x less carbon, and requires less power
per-bit than DRAM [123]. Thus, datacenters should use flash over DRAM whenever pos-
sible [120], even for traditional DRAM workloads, such as caching [60, 105, 178, 179] or
machine learning [265].

Flash currently provides the best combination of performance and cost among memory
and storage technologies and is thus the technology of choice for most large-scale caches |60,
68, 69, 105, 229]. Tt is much faster than mechanical disks. While flash-based caches do use
DRAM for metadata and “hot” objects, the bulk of the cache capacity is flash to reduce
end-to-end system cost.

2.2.3 Flash Solid State Drives (SSDs)

Flash SSDs are built from NAND flash memory. Flash memory has two main limitations:
it wears out with writes and does not allow small-granularity overwrites. SSDs have limited
write endurance — after too many writes, their flash cells can no longer store data [125].
If applications write too much, flash’s lifetime can be extremely short.

10

SSDs have been getting denser. SSD density has increased through two main mech-
anisms: increasing the number of layers and increasing cell density. SSDs have been
3D-stacking layers of cells, growing flash storage “vertically.” Today, flash devices can
have over 200 layers, and the number of layers is quickly increasing [1, 25|. 3D stacking
increases device density but also increases embodied emissions. Flash is also becoming
denser by packing bits into cells. Most datacenter SSDs today use tri-level cells (TLC),
which store 3 bits per cell. Flash SSDs will soon use quad-level cells (QLC) (4 bits/cell)
and penta-level cells (PLC) (5 bits/cell) [203]. Unfortunately, increasing cell density causes
disproportionately lower write endurance.

2.2.4 Challenges in flash caching

Flash presents many problems not present in DRAM caches due to its limited write en-
durance. Without care, caches can quickly wear out flash devices as they rapidly admit and
evict objects [60, 105]. Hence, many existing flash caches over-provision capacity, suffering
more misses in order to slow wear out |60, 69].

Exacerbating the endurance issue, flash drives suffer from write amplification. Write
amplification occurs when the number of bytes written to the underlying flash exceeds the
number of bytes of data originally written. Write amplification is expressed as a multiplier
of the number of bytes written, so a value of of 1x is minimal, indicating no extra writes.
Flash devices suffer from both device-level write amplification and application-level write
amplification [125].

Wherefore device write amplification? Device-level write amplification (DLWA) [105,
159, 237| occurs because flash does not allow overwrites at a small granularity. Instead,
flash devices can write only new values after first erasing a large region of the device. To
support random writes, devices must read all live data in a region, erase the region, and
then write the live data back to the drive along with any new data. As a result, flash SSDs
perform more writes than requested by the application. The device-level write amplification
(DLWA) [70, 105, 125, 156, 159, 168, 237] captures this relative increase in bytes actually
written to flash vs. bytes written by an application. (If an SSD writes 3GB to serve 1GB
of application writes, then DLWA is 3X.) DLWA can be large: a factor of 2x to 10x is
common [178]. DLWA causes write-intensive applications to quickly wear out flash devices,
increasing their replacement frequency and embodied emissions over time.

DILWA is primarily caused by the physical limitations of flash storage. Flash devices
are organized in a physical hierarchy (Fig. 2.4). The smallest unit is the page, usually
4KB. Flash can be written at page granularity, but a page must be erased before it can
be rewritten. To avoid electrical interference during erasure, pages are grouped into flash
blocks |41, 65, 66, 125, 172]. A flash block is the minimum erase size. In practice, however,
flash drives stripe writes across blocks to improve bandwidth and error correction. Striping
increases the effective erase unit (EU) size to gigabytes [66].

The mismatch between the granularity of writes and erases is the root cause of DLWA. To
maintain the 4 KB read/write page interface (confusingly an interface called Logical Block
Addressing (LBA)), flash devices garbage collect (GC), moving live pages from partially

11

[] Empty Page M Live Page

Block Block
@ \:@ [WL 0
et ol s | - U

Block Block Block
T -0 (-0 |-

EUN

Figure 2.4: Flash architecture. The internal arrangement of flash devices into planes,
blocks, pages, and EUs. Each EU has multiple blocks and each block has multiple pages.
EU 0 is a partially full, EU 1 is entirely full, and EU N has just been erased.

empty EUs (such as EU 0 in Fig. 2.4) to a writable EU (such as EU N) before erasing
the EU and freeing dead pages. The less the available capacity on the device, the more
frequently it has to GC, introducing a tradeoff between flash utilization and flash writes.

Denser flash has lower write endurance. As flash becomes denser, its write endurance
drops significantly. For example, while PLC flash is up to 40% denser than TLC, PLC
is forecast to have only 16% of TLC’s writes [23]. Additionally, because denser flash
has to differentiate between more voltage levels, even small voltage changes can make
data unreadable. TLC uses two-phase writes! and more frequent refresh to prevent data
loss [184]. Two-phase writes require the device to have enough RAM and capacitance
to remember all in-flight writes, limiting the number of EUs that can be “active” (i.e.,
writable) at any point in time, often to less than ten. Writing to more EUs than this
requires closing an active EU, incurring more internal device writes.

One might hope that, as a counterbalance, technological advances would decrease EU
sizes, closing the gap between write and erase granularities. However, flash EU sizes have
become larger as flash has gotten denser. Effective block sizes on an SLC flash device were
128 KB|242], MLC and TLC flash devices are around 20 MB [234], and QLC devices are
48 MB [235]. Striping these blocks with hundreds of 3D-stacked layers [235] produces EUs
in the gigabyte range [66, 182]. Thus, DLWA will increase with flash density.

Overprovisioning to reduce DLWA. If DLWA and its write endurance problems are going
to get worse, how can we reduce it? Generally speaking, DLWA worsens as more of the
raw flash capacity is utilized and as workloads contain more of small, random writes. A
common approach to reduce DIWA is overprovisioning, i.e., only exposing a fraction of
the raw flash capacity in the LBA namespace, so that cleaning tends to find fewer live
pages in victim erase blocks [60, 69]. Fig. 2.5 shows DLWA vs. utilized capacity for random

ITwo-phase writes first write pass aims to get each cell close to the desired voltage. The device then
probes the cells to see their actual voltage and does a second, finer programming pass to achieve the
desired voltage. This two-phase process reduces variability in voltage ranges such as from interference
from programming neighboring cells.

12

—_
o

Device Write
Amplification
(6)]

o=

25 50 75 100
Flash Capacity Utilization [%]

o

Figure 2.5: Effects of overprovisioning on write amplification. The effect of flash
over-provisioning on device-level write amplification (DLWA) of random writes of various
sizes. DLWA increases as over-provisioning decreases.

4 KB writes to a 1.9TB flash drive. As expected, DIWA significantly increases as over-
provisioning decreases, from &~1x at 50% utilization to ~10x at 100% utilization. Thus,
overprovisioning is not a panacea, as it reduces the effective capacity of the device.

Application-level write amplification. Unfortunately, DLWA is not the only source of
write amplification in flash caches. Application-level write amplification (ALWA) occurs
when the storage application re-writes some of its own data as part of its storage manage-
ment. One form of this is akin to flash translation layer (FTL) cleaning, such as cleaning in
log-structured file systems [156, 210] or compaction in log-structured merge trees [20, 24].
Another form is caused by having to write an entire logical block. To write a smaller
amount of data, the application must read the block, install the new data, and then write
the entire block [191]|. For example, writing 1 KB of new data into a 4 KB logical block
involves rewriting the other 3 KB, giving ALWA of 4x. Ideally, the unmodified data in the
block would not have been rewritten.

Why caching tiny objects is hard. The size of tiny objects makes caching them on
flash challenging. Tracking billions of tiny objects individually in large storage devices can
require huge metadata structures [105], which either require a huge amount of DRAM,
additional flash writes (if the index lives on flash), or both. To amortize tracking meta-
data, one could group many tiny objects into a larger, long-lived “meta-object”. This can
be inefficient, however, if individual objects in the meta-object are accessed in disparate
patterns.

Tiny objects are also a major challenge for write amplification. Traditional cache
designs (i.e., for DRAM caches) freely re-write objects in place, leading to small, random
writes; i.e., the worst case for DLWA. Since tiny objects are much smaller than a logical
block, re-writing them in place would additionally involve substantial ALWA — 40x for a
100 B object in a 4 KB logical block — which is multiplicative with DLWA. Grouping tiny
objects into larger meta-objects, as mentioned above, shifts ALWA from logical blocks to
meta-objects but does not address the problem.

13

2.2.5 Shortcomings of existing solutions

This section discusses existing solutions for flash caching and their shortcomings for caching
tiny objects.

Key-value stores: Flash-efficient key-value stores have been developed and demonstrated [24,
97, 166, 208, 257], and it is tempting to consider them when a cache is needed. But key-
value stores generally assume that deletion is rare and that stored values must be kept
until told otherwise. In contrast, caches delete items frequently and at their own discretion
(i.e., every time an item is evicted). With frequent deletions, key-value stores experience
severe write amplification, much lower effective capacity, or both [59, 69, 105, 237, 257].

As a concrete example, consider SILT [166], the key-value store that comes closest to
Kangaroo in its high-level design. Like Kangaroo, SILT uses a multi-tier flash design to
balance memory index size vs. write amplification. Unfortunately, SILT’s design is poorly
suited to caching. For example, SILT’s two main layers, which hold >99% of entries, are
immutable. Because those layers are immutable, DELETE operations are logged and do
not immediately reclaim space. Thus, cache evictions result in holes (i.e., reduced cache
capacity) until the next compaction (merge and re-sort) occurs. One can reduce the lost
cache capacity with more frequent compactions, but at a large penalty to performance and
ALWA.

Similar issues with DELETESs affect most key-value stores, often with this same trade-off
between compaction frequency and holes in immutable data structures. One may be able
to reduce these overheads somewhat by coordinating eviction with compaction operations,
but this is not trivial and not how these systems were designed. For instance, Netflix used
RocksDB [24] as a flash cache and had to over-provision by 67% due to this issue [69].
Some key-value stores reduce ALWA by making reads less efficient [168, 208, 257] but do
not sidestep the fundamental challenge of DELETEs wasting capacity. In contrast, flash
caches have the freedom to evict objects when convenient. This lets flash caches co-design
data structures and policies so that DELETEs are efficient and minimal space is wasted.

Log-structured caches: To reduce write amplification, many flash caches employ a log
structure on flash with an index in DRAM to track objects’ locations |61, 105, 159, 220,
229, 237]. While this solution often works well for larger objects, it requires prohibitively
large amounts of DRAM for tiny objects, as the index must keep one entry per object. The
index can spill onto flash [257], but spilling adds flash reads for lookups and flash writes
to update the index as objects are admitted and evicted.

Even Flashield [105], a recent log-structured cache design for small objects, faces DRAM
problems for larger flash devices. After optimizing its DRAM usage, Flashield needs 20
bits per object for indexing plus approximately 10 bits per object for Bloom filters. Thus,
Flashield would need 75 GB of DRAM to track 2 TB of 100 B objects. In fact, Flashield’s
DRAM usage is much higher than this, because it relies on an in-memory cache to decide
which objects to write to flash. The DRAM cache must grow with flash capacity or else
prediction accuracy will suffer, leading to more misses.

Thus, the total DRAM required for a log-structured cache can quickly exceed the
amount available and significantly increase system cost and power. Technology trends will

14

make these problems worse over time, since cost per bit continues to decrease faster for

flash than for DRAM [80, 258|.

Set-associative flash caches: Metadata to locate objects on flash can be reduced by
restricting their possible locations [196]. Meta’s CacheLib [60] implements such a design
for small objects (<2KB), e.g., items in the social graph [71|. CacheLib’s “small-object
cache” (SOC) is a set-associative cache with variable-size objects, using a hash function to
map each object to a specific 4 KB set (i.e., a flash page). With this scheme, SOC requires
no index and only a3 bits of DRAM per object for per-set Bloom filters.

Although more DRAM-efficient, set-associative designs suffer from excessive write rates.
Inserting a new object into a set means rewriting an entire flash page, most of which is
unchanged, incurring 40x ALWA for a 100 B object and 4 KB page as discussed above.
In addition, flash writes are a worst case for DLWA: small and random (Fig. 2.5). The
multiplicative nature of ALWA and DIWA compounds the harmful effect on device lifetimes.

Set-associative flash caches limit their flash write-rate through two main techniques.
To reduce DLWA, set-associative flash caches are often massively over-provisioned. For ex-
ample, CacheLib’s SOC is run in production with over half of the flash device empty [60].
That is, the cache requires more than twice the physical flash to provide a given cache
capacity. Additionally, to limit ALWA, CacheLib’s SOC employs a pre-flash admission pol-
icy |60, 105] that rejects a fraction of objects before they are written to flash. Unfortunately,
both techniques reduce the cache’s achievable hit ratio.

Summary: Prior work does not adequately address how to cache tiny objects in flash
at low cost. Log-structured caches require too much DRAM, and set-associative caches
add too much write amplification. As discussed in Ch. 3, both of these problems lead to
excessive emissions.

2.3 Bulk storage

Bulk storage, supported by distributed storage systems, are the backbone of modern data-
centers, containing exabytes of data across 100Ks of hard disk drives (HDDs) that support
everything from ML training to internet applications. As these storage systems continue
to grow, datacenters continue to deploy cheaper storage media to support unrelenting data
growth while continuing to maintain a low-cost service. New HDD technological advance-
ments support this goal, reducing cost with denser drives. Unfortunately, because these
drives do not have proportionately more 10 supply, distributed storage systems are running
into an [O-per-TB wall.

This section describes hard-disk drives, quantify 10 supply and demand in disk-based
systems (Sec. 2.3.2), how advancements in HDD density lead to the IO-per-TB wall
(Sec. 2.3.3), and some background on distributed storage systems (Sec. 2.3.4).

15

| Size Blades/Rack Count Capacity (‘17) Capacity (‘24)

SSD [218] | 1U 8 16 128 TB 246 TB [31]
HDD [126] | 4U 36 88 1.2PB 2.6 PB [51]

Table 2.1: SSD vs HDD Servers. Comparison of Project Olympus’ storage servers
including the blade size, blades per rack, storage device count, and the capacity of the
entire blade from both the original Project Olympus 2017 specifications and updating the
storage devices to 2024 capacities.

2.3.1 Hard-disk drives

An HDD server’s purpose is to store lots of data cheaply. To accomplish this, each server
holds many disks (e.g., 88 in Project Olympus [126] Table 2.1), referred to as "Just a bunch
of disks" or JBODs. These servers store an order-of-magnitude more data per server than
SSD servers and about 2.6x more data per rack space.

HDDs contain multiple circular platters that store data magnetically. To write or read
data to a platter, the platter’s head has to seek to the correct track and wait for the disk
to spin to the correct sector. Thus, a key factor in request latency is the speed that the
HDD is spinning, i.e., its rotations-per-minute (RPM). RPM affects both wait time and
device bandwidth, since the HDD can only transfer data that passes under its active head.
Unfortunately, even after significant optimization effort, RPM has not improved much for
the past decade [9, 194].

HDDs are growing denser, maintaining their capacity-cost advantage over SSDs. HDDs
have grown from one to 20 terabytes over the last decade without changing their form
factor [147] through density improvements such as shingled-magnetic recording (SMR)
drives that overlap the write tracks to increase bits stored per disk area [45, 256]%. The
next frontier of HDD density is heat-assisted magnetic recording (HAMR), which allows
denser packing of bits by heating disks during writes [35]. HAMR promises to increase
device capacities to 50 TB and beyond [221].

2.3.2 How do we quantify IO on disk?

IO is commonly measured either by throughput (bytes/s) or request rate (IOPS). However,
each only shows half the equation for HDDs. A workload that issues many small reads
will show low throughput but high IOPS, while a workload that issues few large reads will
show high throughput but low IOPS. Given just one of these two metrics, it is impossible
to infer the overall utilization of a disk.

Instead, we quantify 10 by its disk-head time [59, 93|: the combined time required
to serve an 1O request by seeking to the correct head position and then having the head
transfer the data. Given the disk’s average positioning latency and transfer rate, disk-head

2SMR drives also introduce a variant of the erase problem seen on flash since the overlapped tracks
have to be rewritten together.

16

time can be estimated as:

bytes
disk-head time = seek latency x # of requests + Ve
transfer rate

and the portion of total time the disk spends on the 10 as:

disk-head time
total time

disk-head utilization =

2.3.3 Higher-capacity HDDs are increasingly 10-bound

—— Supply e Demand

2.5

0.5

0.0

’ ? “HoD capacity (TB)

Figure 2.6: HDD IO supply vs demand. Projected HDD IO-per-TB supply trend
as disks become denser against the IO demands at Google based on their public Thesios
traces [199]. Drives bigger than 24 TB will not be able to support the 10 requirements
at hyperscalars. We assume each 10 operation to be 2 MB in size, average repositioning
latency of 10 ms, and a transfer speed of 150 MBps.

As hard drives have seen significant increases in capacity, their seek latencies and trans-
fer rates have not improved at the same pace due to physical limitations of the devices.
While HDD transfer rates have increased with capacity due to higher areal density, these
improvements are small compared to the increases in capacity. Thus, the disk-head time
of a given request has remained roughly constant as HDD capacities have grown, meaning
that a smaller percentage of the disk can be accessed in any given amount of time as disk
capacity increases.

To measure this effect, Fig. 2.6 shows the 1O supplied by the disks, both current and
projected, versus the 10 demanded of the disk, based on Google’s Thesios traces [199],
in IO-per-TB (measured in units of disk-head time per TB). As distributed storage sys-
tems either add additional capacity or replace older less dense disks using newer, denser
disks, the IO-per-TB supplied by the storage systems is decreasing, i.e. we move to the
right on the graph. Meanwhile, as the new and existing data stored by these systems
continues to be accessed at the same rate, the IO-per-TB demanded of storage will remain

17

A
B s | [
pplication Tier

Data Management Tier/ I \
/ Database \ ’ /Object Store\ e / Lakehouse \

e AN AN

.
.
.
Py

s1senbal
SN\ / PesY
anesodw|

Bulk Storage Tier

Figure 2.7: 10 demand across datacenter. All requests into the caching and bulk
storage tiers are imperative, independent of where they are from.

roughly constant. This trend in IO supply is set to accelerate in the next ten years as
HAMR devices, which have recently come to market, lead to continued increases in HDD
capacity [15, 16, 17, 154]. Hence, distributed storage systems are quickly approaching a
[O-per-TB wall, where IO demand will significantly outstrip IO supply. When HDD capac-
ities exceed 22TB, we project that the storage system will hit the IO-per-TB wall, forcing
system operators to forgo the cost, power, and footprint advantages of denser drives.

2.3.4 10 demand in distributed storage systems

Today’s IO demand comes from across the datacenter, from applications down to the stor-
age system (Fig. 6.3). Unsurprisingly, applications want data, but also data management,
caches, and the distributed storage system all need data to fulfill their roles on top of the
data requested directly by applications.

All these data accesses send imperative 10 requests (read-this, write-that now) to the
distributed storage system. For requests for data that is indeed needed immediately, these
imperative requests are the right option. We refer to these immediate requests as ap-
plication 10 (the black arrows in Figure 6.3). Other requests may have some flexibility,
but this flexibility is currently obscured by the imperative interface. We refer to these
flexible requests as maintenance 10 (the colorful arrows). The caching tier is generally ef-
fective in absorbing IO demand from application I0. However, maintenance 10O is generally
less cacheable, and therefore makes up a disproportionate fraction of the IO demand that
reaches the bulk storage tier.

18

) Networking
Networking 11%

9% Compute
28%
Storage
33% Compute
58%
Storage
61%
(a) Operational. (b) Embodied.

Figure 2.8: Operational and embodied emissions at Azure. Breakdown of opera-
tional and embodied emissions at Azure [180, 251].

2.4 Datacenter sustainability

The information and communication technology (ICT) sector has increasingly been rec-
ognized as a large contributor to global energy demand and emissions [122], the cloud
more specifically [155, 251]. We are just starting to explore the way in which choices of
datacenter design influence their emissions [122, 123, 173, 251].

Generally, we divide emissions into three components — direct emissions (Scope 1),
operational emissions (Scope 2), and embodied emissions (Scope 3) — based on the Green-
house Gas Protocol’s definitions [122, 123, 251|. Scope 1 emissions (for instance, from com-
pany vehicles or on-site generators) are negligible for hyperscalars [251], so we do not discuss
them in this dissertation. Operational emissions are emissions from the electricity used to
power and cool datacenters. They are about 25-58% of emissions today [36, 251], but are
expected to decrease as hyperscalars actively deploy more renewable energy [122, 123].
Embodied emissions are indirect emissions or emissions from the supply chain, such as
from manufacturing, transporting, and end-of-lifing hardware. These emissions are in-
creasing [36] as hyperscalars continue to build and expand datacenters to keep up with
demand.

Fig. 2.8 shows a breakdown of operational and embodied emissions between compute,
storage, and networking at Azure from 2023. Storage is responsible for 33% of operational
emissions and 61% of embodied emissions. While we expect storage’s operational emissions
to be less significant due to Al workloads’ large and increasing energy demands, storage will
continue to dominate embodied emissions [180]. Thus, to reduce embodied emissions, the
large and growing fraction of datacenter emissions, we need to focus on storage’s embodied
emissions.

The remainder of this section discusses prior work on reducing storage emissions (Sec. 2.4.1).
Since there are limited approaches to reduce storage emissions in prior work, we will also
discuss prior work on reducing computer emissions, where there is more research so that
we can assess how well that work can be applied to storage (Sec. 2.4.2).

19

2.4.1 Prior work on reducing storage emissions

While there has not been much prior work on reducing storage emissions, we identify that
prior work has identified the influence of media choice on storage emissions, discussed
how to increase lifetime of storage through overprovisioning and data degradation, and
identified how to reduce energy consumption in storage.

Media choice influences storage emissions. DRAM often makes up 40% to 50% of
server cost [163, 222, 236]. DRAM also has a large embodied carbon footprint (46% of a
server in Azure [173]) and has large operational emissions due to requiring up to half of sys-
tem power [123]. Flash embodies 12x less carbon and requires less power per-bit [123] (i.e.
less operational emissions per-bit assuming the same energy source). Thus, datacenters
should use flash over DRAM to reduce emissions whenever possible [120] even for tradition-
ally DRAM workloads, such as caching [60, 105, 178, 179] or machine learning [265]. HDDs
are even less carbon-intensive, ~3-10x less embodied carbon per-bit than flash [123, 238].
This means that hard drives are going to be an essential part of a sustainable storage stack,
particularly more dense drives that have similar hardware manufacturing requirements.

Reducing storage energy consumption Prior work has tried to reduce energy, partic-
ularly for HDDs that require constant power, since the early 2000s. This work fits into two
categories: (i) caching to create idle IO periods and (7i) distributing data to enable power
proportionality. Unfortunately, these solutions do not consider embodied emissions.

HDDs use far less power when in idle or sleep modes [26], so prior work often aims to
create idle periods in HDD traffic. Prior work used different strategies, such as using a
relatively low-power disk to store most hot data [76], separating hot and cold data [131, 151,
162, 200], or employing better prefetching and caching policies [205, 228]. These policies
often do not work for common maintenance tasks that stream through large amounts of
data sequentially, such as scrubbing [53, 216], and are hard to change in cloud environments
where much of the work is not under the cloud provider’s control. As shown in Pelican [53],
datacenter power provisioning would also have to change to accommodate variable power,
since typically power is provisioned for storage server’s peak — when all disks are running.

Alternatively, some work has suggested leveraging data replication to turn off storage
servers when either 10 is low enough [46, 53, 89, 240] or there is not enough available green
energy [150]. Turning off the entire server allows for energy savings from all components,
not just disks [116]. Unfortunately, most prior work assumes data replication, where the
storage system stores multiple copies of data, whereas today’s datacenters use more space-
efficient erasure codes [145, 146]. One prior paper did consider leveraging redundancy in
erasure-code-based distributed storage systems [201], but much more work can be done
especially factoring in embodied emissions.

More recently, these ideas have been revisited for flash and operational emissions. For
instance, if one assumes flash is power-proportional, we could move background IO accesses
to when there is more renewable energy and reduce operational emissions [209]. While this
approach is more promising, because it does not require additional embodied emissions,
we find that flash in datacenters today is not power-proportional (Sec. 3.1). None of this
research also addresses the largest fraction of storage emissions — embodied emissions.

20

Decreasing storage embodied emissions. There are two main pieces of prior work
on reducing embodied emissions in storage: one that increases device lifetime through
overprovisioning and one that argues for deploy lower-emission, lower-endurance flash by
accepting degraded data quality.

Increasing device lifetime is a key way to reduce embodied emissions, since embodied
emissions are independent of device lifetime. Unfortunately, flash has a limited lifetime due
to its limited write endurance (Sec. 2.2.3), so prior work has suggested increasing overpro-
visioning to increase lifetime [123]. Using overprovisioning to decrease embodied emissions
is a trade-off. Increasing overprovisioning decreases embodied emissions for a while, be-
cause it lowers the device-level write amplification. Eventually though, the capacity loss
from overprovisioning means that the the embodied emissions per stored bit increases.
For 2 year lifetimes, the optimal overprovisioning that Gupta found was 16% [123], higher
than the traditional 7% device overprovisioning for commodity SSDs and at much less the
expected lifetimes in datacenters (which is 5-6 year [173]).

A different way to reduce flash emissions is to use high-density, lower-emission flash
by accepting degraded data quality and the potential deletion or loss data as the dense
flash degrades [270]. This approach does not work well in the datacenter due to explicit
durability guarantees.

This prior research leaves open whether, through system design, we can reduce flash’s
embodied emissions without sacrificing durability better than just relying on overprovi-
sioning. It also does not address reducing embodied emissions of hard disk drives despite
their prevalence in bulk storage.

2.4.2 Prior solutions to reduce compute emissions

Since prior work on reducing storage embodied emissions in system design is limited, we
now shift our attention to prior work on reducing compute emissions and see whether
we can apply it to storage. Prior work on compute often focuses on reducing energy
usage [83, 112, 114, 115, 135, 170, 171, 183, 204, 231, 268| and moving computation to
times/locations with more renewable energy |14, 39, 55, 207, 230, 255]. Since both of these
approaches focus on operational emissions, they are less relevant for storage. Instead,
compute shows two other, more promising approaches that are more relevant to storage:
using fewer compute devices [81, 98, 99, 117, 223] and increasing lifetimes by identifying
places where older device performance is adequate [174, 241, 248, 249, 250]. Unfortunately,
as we will show in Ch. 3, these approaches both have new challenges in storage that need
to be overcome to be viable strategies to reduce storage emissions.

21

22

Chapter 3

Reducing storage emissions results in 10
limitations

“Remarkably, the manufacturing of storage devices alone contributed to an
estimated 20 million metric tonnes of CO5 emissions in the year 2021”

Tannu and Nair. [238]

ISTRIBUTED STORAGE is a large emitter [251|. Unfortunately, there is no standard

break down of storage emission sources as they are deployed in datacenters, which
is necessary to understand and reduce storage emissions. Therefore, we begin by showing
how each component of storage servers in a datacenter rack contributes to emissions at
Azure (Sec. 3.1). We then introduce a model to frame the discussion on how to reduce
emissions. This model shows how using fewer, denser drives and extending lifetime are
the two ways to reduce storage’s embodied emissions. We also present how both of these
solutions lead the key challenge of sustainable storage — a lack of IO (Sec. 3.2).

3.1 Where do storage emissions come from?

We now present the emissions from both a SSD storage rack and an HDD storage rack
in Azure, focusing on the key components (CPU, DRAM, SSD, and HDD). We use the
“Other” category to group rack overheads, such as fans, network switches, power supplies,
and power delivery units. For embodied carbon, the “Other” category also includes passive
material like sheet metal and plastics. Sec. 3.1.1 discusses operational emissions, e.g., from
power generation, and Sec. 3.1.2 discusses embodied emissions, e.g., from semiconductor

fabs.

3.1.1 Operational emissions

Table 3.1 shows the relative operational emissions of each Azure rack type. To determine
energy consumption and therefore operational emissions of different components, we take
component energy draws measured under a representative load. Notably, an SSD storage

23

Operational Emissions ‘ CPU DRAM SSD HDD Other

42% 18% 19% 0% 21%
32% 8% 38% 1% 21%
26% 5% 7% 41% 21%

Compute Rack
SSD Rack
HDD Rack

Table 3.1: Operational emissions at Azure. Operational emission breakdown for
Azure different rack types and for different components of each rack type.

Embodied Emissions ‘ CPU DRAM SSD HDD Other

1% 40% 30% 0% 26%
1% 9% 80% 1% 9%
2% 11% 14% 41% 33%

Compute Rack
SSD Rack
HDD Rack

Table 3.2: Embodied emissions at Azure. Embodied emission breakdown for Azure
different rack types and for different components of each rack type.

rack has approximately 4x the operational emissions per TB of an HDD storage rack.

Storage devices (SSDs and HDDs) are the largest single contributor of operational emis-
sions. For SSD racks, storage devices account for 39% of emissions, whereas for HDD racks
they account for 48% of emissions. These numbers contradict the conventional wisdom
that processing units dominate energy consumption [123, 251]: storage servers carry so
many storage devices that they become the dominant energy consumers. Thus, the best
way to reduce operational emissions in a storage server is to reduce the storage devices’
energy.

Since CPUs still cause the next largest portion of the emissions, improving the energy
efficiency of CPUs in storage servers may still provide benefits. However, one has to be
careful with energy efficiency improvements that increase embodied carbon emissions [238,
251]. For example, advanced semiconductor fabrication nodes reduce operational emissions
but increase manufacturing emissions and electricity use [54, 104, 233|. This consideration
is particularly important in storage, which is already embodied emission heavy.

3.1.2 Embodied emissions

We show the relative embodied emissions of each Azure rack type in Table 3.2. To esti-
mate embodied emissions, we use raw material numbers from vendors, the device’s silicon
area, and then leverage IMEC [18] and Makersite [21] to determine average emissions for
manufacturing processes. We ensure that manufacturing and shipping emissions are only
counted once and are amortized across components, so that our embodied emissions results
are comparable to our operational emissions results.

SSD racks contribute approximately 10z the embodied emissions per TB as that of HDD
storage racks. The storage devices themselves dominate embodied emissions, accounting
for 81% and 55% of emissions in SSD and HDD racks, respectively. While DRAM is the
largest embodied emissions contributor in compute servers, this is not true for storage
servers due to the many storage devices in these servers. Across both operational and

24

embodied emissions in distributed storage clusters, there is a clear need to reduce emissions
from the storage devices themselves.

3.2 How can datacenters reduce storage emissions?

We now consider the important opportunities and challenges in reducing storage emis-
sions. To structure the discussion, we model emissions by breaking apart operational and
amortized embodied emissions:
Annual Carbon Emissions
= Operational Emissions + Embodied Emissions

B Z <Watt—H0urs Carbon Carbon 1)

oo Device 8 Watt-Hour * Device 8 Lifetime
This simple model tells us that emissions can be reduced in five ways: using fewer de-
vices, lowering power, reducing carbon intensity of power, reducing per-device embodied
emissions, or increasing server and device lifetime.

Thus, to specifically reduce embodied emissions, we can use fewer, less embodied-
emissions-per-bit devices or increase lifetimes. Unfortunately, these improvements in flash
and hard drive emissions-per-bit come with drawbacks in the form of decreased 10. De-
ploying denser flash and increasing its lifetime both lower the number of writes that flash
can withstand without wearing out. Denser hard drives cannot increase their bandwidth
to keep up with their capacity. Without addressing these 1O limitations, at best, these
technologies cannot be deployed, at worse, they can increase emissions. For the rest of
this section, we describe these IO limitations in more detail for both flash (Sec. 3.2.1) and
HDDs (Sec. 3.2.2).

3.2.1 Denser and longer lifetimes to reduce flash emissions

To reduce flash emissions, we can use fewer, denser devices and increase lifetime. The
denser the flash, the more it reduces embodied emissions, since more bits are packed onto
roughly the same silicon. Moving to longer lifetimes also amortizes embodied carbon.
Traditionally, datacenter hardware replacement cycles have been around 3 years [173] due
to the rate of improvement in hardware performance and power-efficiency. Today, data-
centers deploy devices for longer. Longer replacement cycles have become common due
to their cost advantages and the slowing of Moore’s Law. For example, Microsoft Azure
increased the depreciable lifetime of servers from 4 to 6 years [127, 174, and Meta recently
started planning for servers to last 5.5 years [39]. Additionally, hyperscalers are finding
that servers do not fail quickly: failure rates at Azure have little evidence of increasing
before 8 years [64, 173].

Lowering carbon-intensity lowers write rate. Unfortunately, as flash becomes denser
and its lifetime increases, its write endurance drops significantly. Fig. 3.1 models how
write rate affects both emissions when varying lifetimes and flash density. Each line shows

25

—— 3 years —— 5 years — 7 years —— 10 years

Ipic alc TcC —
5.0 —ﬁ

2.5+

'—I
o
o

Carbon Emissions
(CO5 kg/TB-year)

0.0

Write Rate (DWPD)

Figure 3.1: Flash carbon emissions vs write rate. The annual carbon emissions of
flash depending on the required average write rate and desired lifetime. Lifetime has a
much larger impact on emissions than density, but both are important to lower emissions.

a device of a different lifetime, and shaded regions show which flash density is best for a
given write rate. The model calculates how much capacity must be provisioned for each
technology to achieve the desired lifetime at a given write rate. Device lifetime is the most
important factor in reducing carbon emissions. Moreover, denser flash has the potential
to improve sustainability, but only if flash write rate is very small — much less than one
device-write per day. However, if flash applications use dense flash, but cannot reduce their
write rate enough for a long lifetime, then their carbon emissions increase over using a less
dense flash device for a longer lifetime. To have low-emissions flash deployments, we need
to overcome flash’s write limitation.

3.2.2 10O-per-capacity wall limits HDDs

Although hard drives are not currently write-limited like flash, they are quickly running
into their own IO limitation if we want to deploy denser drives. 10 bottlenecks are already
becoming a challenge in datacenters for HDDs, primarily because higher-capacity HDDs
do not increase their bandwidth. For instance, Seagate has LCA analysis for its Exos
HDDs show that its 18 TB HDD has 59.6% fewer kg COqe per TB-year compared to its
10 TB drive [32, 33]. However, the 18 TB HDD’s bandwidth increases only 8.4% and has no
increase in random 4KB IOPS [28, 29]. In order to use the 18 TB drives instead of 10 TB
drives, we would need to reduce IO per GB stored. But there is little headroom available
— many storage applications already saturate today’s HDD bandwidth (Sec. 2.3.3).

This IO limitation is universal for hard drives. Fig. 3.2 shows the decrease in bandwidth-
per-TB, a ~8.5% reduction per year. HDDs are already running into bandwidth limitations
in bulk storage. Therefore, deploying HDDs that have lower bandwidth is not possible in
many datacenters today, preventing datacenters from realizing the carbon-savings of these
denser drives unless bulk storage can decrease its IO requirements.

To deploy these denser drives, we need to reduce IO, but this is difficult. Storage
systems already deploy large caches to take advantage of most locality in the storage

26

w
w

w
o

N
(9]

N
o

—
(8]

=
o

/

/
/T
/P>
=
o

w

Bandwidth (MB/s) / Capacity (TB)

2014 2016 2018 2020 2022 2024
Date of Manufacture

Figure 3.2: HDDs bandwidth-per-TB is dropping. HDD Sustained Bandwidth-per-
TB trend over years [38]. The red empty circle denotes the speculated bandwidth/TB cost
after the introduction of future disk technologies like HAMR [15, 16, 17].

accesses [60, 93, 178, 261]. Additional caching capacity also needs to be weighed against
the cache’s emissions. Caching also does not help with low-locality workloads, like LSM
compaction [24, 79, 95, 96, 103, 157, 208]. Thus, we need to develop new solutions to
reduce IO so we can deploy fewer, denser drives and reduce emissions.

Extending lifetime in HDDs. Deploying denser drives is especially important for HDDs;,
since extending lifetime in HDDs is difficult due to device failure. Unlike flash, where
device failures correlate to wear out, HDD failure rates increase with age. Reported annual
failure rates can double going from three to six year lifetimes [143] as HDDs enter end of
life [106, 107, 260]. Therefore, we focus on increasing HDD density through lowering IO to
decrease HDD emissions.

27

28

Chapter 4

Kangaroo: Caching Billions of Tiny
Objects on Flash

“The species has an unusual eating practice. The kangaroo regurgitates grass and
shrubs that it has already eaten and chews it once more before swallowing it for
final digestion.”

PBS Nature, Kangaroo Fact Sheet. [187]

“Methane is a greenhouse gas that is roughly 25 times more powerful than carbon
dioxide at trapping heat in the atmosphere, making it a key target of global efforts
to fight climate change. Dairy cows and beef cattle are a significant source of
methane, which is released as a byproduct of food digestion in the stomach of cows
and other hoofed animals. Kangaroos, like cows, also have microbes in their gut
which aid in digesting plant material. But these microbes release acetic acid instead
of methane.”

Sheraz Sadiq on “Reducing methane production from rumen cultures by
bioaugmentation with homoacetogenic bacteria”. [149, 213]

ANY WEB SERVICES require fast, cheap access to billions of tiny objects, each a

few hundred bytes or less. Examples include social networks like Facebook or
LinkedIn [60, 71, 253], microblogging services like Twitter [261, 262|, ecommerce [63],
and emerging sensing applications in the Internet of Things [111, 160, 161|. Given the
societal importance of such applications, there is a strong need to cache tiny objects at
high performance and low cost (i.e., capital and operational expense).

Among existing memory and storage technologies with acceptable performance, flash is
by far the most cost-effective. DRAM and non-volatile memories (NVMs) have excellent
performance, but both are an order-of-magnitude more expensive than flash. Thus, cost
argues for using of large amounts of flash with minimal DRAM.

Flash’s main challenge is its limited write endurance; i.e., flash can only be written so
many times before wearing out. Wearout is especially problematic for tiny objects because
flash can be read and written only at multi-KB granularity. For example, writing a 100 B
object may require writing a 4 KB flash page, amplifying bytes written by 40x and rapidly

29

1?:501?11;/[Log Structured (LS)
el })' KSet Kangaroo
ROR oD 00 01 02 03 o4
Miss Ratio
(a) Overview. (b) Kangaroo reduces misses by 29%.

Figure 4.1: Overview of Kangaroo design and results.(a) High-level illustration
of Kangaroo’s design. (b) Miss ratio achieved on a production trace from Facebook by
different flash-cache designs on a 1.9 TB drive with a budget of 16 GB DRAM and three
device-writes per day. Prior designs are constrained by either DRAM or flash writes,
whereas Kangaroo’s design balances these constraints to reduce misses by 29%.

wearing out the flash device. Thus, cost also argues for minimizing excess bytes written to
flash.

The problem. Prior flash-cache designs either use too much DRAM or write flash too
much. Log-structured caches write objects to flash sequentially and keep an index (typically
in DRAM) that tracks where objects are located on flash [61, 105, 159, 220, 229, 237].
By writing objects sequentially and batching many insertions into each flash write, log-
structured caches greatly reduce the excess bytes written to flash. However, tracking
billions of tiny objects requires a large index, and even a heavily optimized index needs
large amounts of DRAM [105]. Set-associative caches operate by hashing objects’ keys
into distinct “sets,” much like CPU caches [60, 71, 196]. These designs do not require
a DRAM index because an object’s possible locations are implied by its key. However,
set-associative caches write many excess bytes to flash. Admitting a single small object
to the cache requires re-writing an entire set, significantly amplifying the number of bytes
written to the flash device.

Our solution: Kangaroo. We introduce Kangaroo, a new flash-cache design optimized
for billions of tiny objects. The key insight is that existing cache designs each address
half of the problem, and they can be combined to overcome each other’s weaknesses while
amplifying their strengths.

Kangaroo adopts a hierarchical design to achieve the best of both log-structured and
set-associative caches (Fig. 6.1).

To avoid a large DRAM index, Kangaroo organizes the bulk of cache capacity as a set-
associative cache, called KSet. To reduce flash writes, Kangaroo places a small (e.g., 5%
of flash) log-structured cache, called KLog, in front of KSet. KLog buffers many objects,
looking for objects that map to the same set in KSet (i.e., hash collisions), so that each
flash write to KSet can insert multiple objects. Our insight is that even a small log will
yield many hash collisions, so only a small amount of extra DRAM (for KLog’s index) is
needed to significantly reduce flash writes (in KSet).

The layers in Kangaroo’s design complement one another to maximize hit ratio while

30

minimizing system cost across flash and DRAM. Kangaroo introduces three techniques to
efficiently realize its hierarchical design and increase its effectiveness. First, Kangaroo’s
partitioned index lets it efficiently find all objects in KLog that map to the same set in KSet
while using a minimal amount of DRAM. Second, since Kangaroo is a cache for immutable
objects, not a key-value store, it is free to drop objects instead of admitting them to KSet.
Kangaroo’s threshold admission policy exploits this freedom to admit objects from KLog
to KSet only when there are enough hash collisions — i.e., only when the flash write is
sufficiently amortized. Third, Kangaroo’s “RRIParoo” eviction policy improves hit ratio
by supporting intelligent eviction in KSet, even though KSet lacks a conventional DRAM
index to track eviction metadata.

Summary of results. We implement Kangaroo as a module in CacheLib [60] (cachelib.
org). We evaluate Kangaroo by replaying production traces on real systems and in simu-
lation for sensitivity studies. Prior designs are limited by DRAM usage or flash write rate,
whereas Kangaroo optimizes for both constraints. For example, under typical DRAM and
flash-write budgets, Kangaroo reduces misses by 29% on a production trace from Face-
book (Fig. 4.1b), lowering miss ratio from 0.29 to 0.20. Moreover, in simulation, we show
that Kangaroo scales well with flash capacity, performs well with different DRAM and
flash-write budgets, and handles different access patterns well. We break down Kangaroo’s
techniques to see how much each contributes. Finally, we show that Kangaroo’s benefits
hold up in the real world through a test deployment at Facebook.

Contributions. This chapter contributes the following:

e Problem: We show that, for tiny objects, prior cache designs require either too much
DRAM (log-structured caches) or too many flash writes (set-associative caches).

¢ Key idea: We show how to combine log-structured and set-associative designs to
cache tiny objects on flash at low cost.

e Theoretical foundations: We develop a rigorous Markov model that shows Kangaroo
reduces flash writes over a set-associative flash design without any increase in miss
ratio.

e Kangaroo design € implementation: Kangaroo introduces three techniques to realize
and improve the basic design: its partitioned index, threshold admission, and RRI-
Paroo eviction. These techniques improve hit ratio while keeping DRAM usage, flash
writes, and runtime overhead low.

® Results: We show that, unlike prior caches, Kangaroo’s design can handle different
DRAM and flash-write budgets. As a result, Kangaroo is Pareto-optimal across a
wide range of constraints and for different workloads.

4.1 Kangaroo Overview and Motivation
Kangaroo is a new flash-cache design optimized for billions of tiny objects. Kangaroo
maximizes hit ratio while minimizing DRAM usage and flash writes. Like some key-value

stores [79, 166, 175], Kangaroo adopts a hierarchical design, split across memory and flash.
Fig. 4.2 depicts the two layers in Kangaroo’s design: (1) KLog, a log-structured flash cache

31

cachelib.org
cachelib.org

and (i) KSet, a set-associative flash cache; as well as a DRAM cache that sits in front of
Kangaroo.

KLog Index
@ DRAhM Bloom filters
Cache ' /—\
B——— | @)./—D}mzz Cache
|

Miss
orat v e
fhoe @ KSet | |mm N

Figure 4.2: Looking up objects in Kangaroo. Lookups in Kangaroo first check a
tiny DRAM cache; then KLog, a small on-flash log-structured cache with an in-DRAM
index; and finally KSet, a large on-flash set-associative cache. Kangaroo uses little DRAM
because KLog is small and KSet has no DRAM index.

Basic operation. Kangaroo is split across DRAM and flash. As shown in Fig. 4.2,
@ lookups first check the DRAM cache, which is very small (<1% of capacity). @ If
the requested key is not found, requests next check KLog (/5% of capacity). KLog main-
tains a DRAM index to track objects stored in a circular log on flash. @ If the key is not
found in KLog’s index, requests check KSet (=95% of capacity). KSet has no DRAM in-
dex; instead, Kangaroo hashes the requested key to find the set (i.e., the LBA(s) on flash)
that might hold the object. If the requested key is not in the small, per-set Bloom
filter, the request is a miss. Otherwise, the object is probably on flash, so the request
reads the LBA(s) for the given set and scans for the requested key.

@ KLog Index @
@ DC%?hlg Bloom filters
(| —> g > B[——
\
DRAM \
Flash @

Figure 4.3: Inserting and evicting objects in Kangaroo. Objects are first inserted
into the tiny DRAM cache, then appended to KLog, and finally moved — along with all
other objects mapping to the same set — to KSet. Kangaroo significantly reduces write
amplification because KLog is written sequentially and each write to KSet inserts multiple
objects.

Insertions follow a similar procedure to reads, as shown in Fig. 4.3. @ Newly inserted
items are first written to the DRAM cache. This likely pushes some objects out of the

32

DRAM cache, where they are either dropped by KLog’s pre-flash admission policy or
added to KLog’s DRAM index and @d appended to KLog’s flash log (after buffering
in DRAM to batch many insertions into a single flash write). Likewise, inserting objects
to KLog will push other objects out of KLog, which are either dropped by another
admission policy or @b) inserted into KSet. Insertions to KSet operate somewhat differently
than in a conventional cache. For any object moved from KLog to KSet, Kangaroo moves
all objects in KLog that map to the same set to KSet, no matter where they are in the log.
Doing this amortizes flash writes in KSet, significantly reducing Kangaroo’s ALWA.

Design rationale. Kangaroo relies on its complementary layers for its efficiency and per-
formance. At a high level, KSet minimizes DRAM usage and KLog minimizes flash
writes. Like prior set-associative caches, KSet eliminates the DRAM index by hashing
objects’ keys to restrict their possible locations on flash. But KSet alone suffers too much
write amplification, as every tiny object writes a full 4 KB page when admitted. KLog
comes to the rescue, serving as a write-efficient staging area in front of KSet, which Kan-
garoo uses to amortize KSet’s writes.

On top of this basic design, Kangaroo introduces three techniques to minimize DRAM
usage, minimize flash writes, and reduce cache misses. (i) Kangaroo’s partitioned index
for KLog can efficiently find all objects in KLog mapping to the same set in KSet, and
is split into many independent partitions to minimize DRAM usage. (i) Kangaroo’s
threshold admission policy between KLog and KSet only admits objects to KSet when
at least n objects in KLog map to the same set, reducing ALWA by > nx. (iii) Kangaroo’s
“RRIParoo” eviction improves hit ratio in KSet by approximating RRIP [133], a state-of-
the-art eviction policy, while only using a single bit of DRAM per object.

4.2 Theoretical Foundations of Kangaroo

We develop a Markov model of Kangaroo’s basic design, including threshold admission, to
analyze Kangaroo’s miss ratio and flash write rate. This model rigorously demonstrates
that Kangaroo can greatly reduce ALWA compared to a set-only design, without any increase
in miss ratio.

Assumptions. For tractability, this analysis makes several simplifying assumptions that
do not hold in our design (Sec. 4.3), implementation (Sec. 4.4), or evaluation (Sec. 4.5). We
assume the independent reference model (IRM), in which each object has a fixed reference
popularity, drawn independently from a known object probability distribution. However,
we make no assumptions about the object popularity distribution; our model holds across
any popularity distribution (uniform, Zipfian, etc.). We also assume that all objects are
fixed-size and that KSet uses FIFO eviction. Similar assumptions are common in prior
cache models [43, 61, 62, 88, 92, 113, 141, 197, 211].

We model a cache consisting of two layers: a log-structured cache and a set-associative
cache, called KLog and KSet, as in Kangaroo — but note that the model simplifies Kan-
garoo’s operation significantly. We assume that an object is first admitted to KLog. Once
KLog fills up, it flushes all objects to KSet. KLog and KSet may employ an admission

33

Variable Description

Out-of-cache state.
KLog state.
KSet state.

Capacity of each set.

Number of sets in KSet.
Capacity of KLog.

Probability of requesting object i.

Jaw g | SO0

m Miss probability.
f Flash write rate.
T X Stationary probability of object i in state X.
X —Y Transition from state X to state Y.

Table 4.1: Variables in Kangaroo model. Key variables in the Markov model with
descriptions.

policy that drops objects instead of admitting them, as described below. Our goals are
(i) to compute the miss probability and flash writes per cache access and (%i) to show that
Kangaroo improves miss ratio for a given write rate vs. the baseline set-associative cache.

Modeling approach. We model how a single object moves through KLog and KSet.
Fig. 4.4 shows our simple continuous-time Markov model, which has three states: an object
can be out-of-cache (O), in KLog (@), or in KSet (W). To compute the miss probability
m, we need to know each object’s probability of being requested, which is fixed according
to the IRM, and the probability that it is out-of-cache (in state O). To find the latter,
we need to know each state’s stationary probabilities, 7, i.e., the likelihood of an object
being in a given state once the cache reaches its steady-state behavior. To compute these
probabilities and to find flash write rate, we require the transition rates between states,
e.g., how often an object transitions O — () when an object is admitted to KLog. Table 4.1
summarizes the key variables in the model.

Summary of model results. Through building our model from a baseline set-associative
cache, we will show that Kangaroo’s ALWA follows Theorem 1 and that Kangaroo’s miss
ratio is the same as a set-associative flash cache.

Theorem 1. Suppose KLog contains q objects; KSet contains s sets with w objects each;
objects are admitted to flash with a p probability; and objects are only admitted to KSet if
at least n new objects are being inserted. Kangaroo’ app-level write amplification is

F
ALWA Kangaroo = P (1 + = - X(n))) (41)
Fx()E[X|X > n]
where X ~ Binomial(q,1/s) and Fx(n) =Y ;o P[X =] is the probability of a set being
re-written. Furthermore, the probability of admitting an object to KSet is P[X > n|X > 1].

For a reasonable parameterization of Kangaroo on a 2 TB drive with 5% of flash dedi-
cated to KLog (¢q =5-10% s =4.6-10%, w = 40, p = 1, and n = 2), Kangaroo’s ALWA will

34

© r. <@ N <<@ ﬂ"“ql—l@@@?

: . : mep
. N . (@) |%
SW @ SW @ SW 2mTD
2m 2m: a
q : 0
@ @ @ (d) + Probabilistic admis-
(a) Baseline. (b) + KLog. (c¢) + Threshold. sion.

Figure 4.4: Markov Model for Kangaroo. The continuous Markov model for Kanga-
roo’s basic cache design (a) with no log, (b) with no admission policies, (¢) with Kangaroo’s
threshold admission before KSet, and (d) with probabilistic admission before KLog.

be =~ 5.8. In contrast, a set-associative cache of the same size and admission probability,
P[X > n|X > 1] = 0.45, gets ALWAgets = w - 0.45 = 17.9x. That is, Kangaroo improves
ALWA by &~ 3.08x, a large decrease in ALWA with only a small percentage of flash dedicated
to KLog.

4.2.1 Baseline set-associative cache

We first analyze a baseline set-associative cache (i.e., without KLog) and build up to
Kangaroo. This design has all objects admitted directly to KSet.

Transition rates: Each object 7 is requested with probability ;. When an object is requested
and not in the cache, there is a miss and the object moves to KSet. So, the transition rate
from O — W is r;.

Each set in KSet holds w objects. Since we are modeling FIFO eviction of fixed-sized
objects, KSet evicts each object after w newer objects are inserted into the same set. With
s sets, each set only receives 1/s of misses, so the probability of writing a new object to

a set is %*. Since there needs to be w newer objects in the set to evict an object, the

transition rate from W — O is mT/S

Stationary probabilities: With the transition rates, we calculate the stationary probabilities
using two properties of stationary probabilities: (i) the sum of all the stationary proba-
bilities is 1 and (i) the likelihood of entering and leaving a state is equal since stationary

probabilities occur at steady-state behavior. From these, we reach the equations:

l=mo+mw (42)
riT,0 = % W (4~3)

35

which means that the stationary probabilities are:

m

0= ——— 4.4

.0 m-—+swr; ()
SWT;

Wy = 4.5

W m-+swr; ()

Miss ratio: The miss ratio is computed by summing the probability that an object will miss
when it is requested for all objects. Object i is requested with probability r; and misses
when it is out-of-cache with probability m; 0. Hence, the overall miss ratio m is:

mr;
Mpaseline = E T T0 = E (46)
- m-+swr;

i

Without knowing the popularity distribution {r;}, we cannot go further than this; yet we
will see it is sufficient to show that Kangaroo’s design does not compromise miss ratio
under our model.

Flash writes: To compute the flash write rate, we assign a write-cost to each edge in Fig. 4.4.
For the baseline set-associative cache, each transition O — W re-writes the entire set, and
so the transition has a write-cost of w. Transitions W — O do not write anything to flash,
and so they have no write-cost. The flash write rate f is the average bytes written to flash
on each access; that is, we compute write rate in logical time. In the baseline design, this

is:
fbaseline = Z Ty T,0 * W= W * Mpaseline (47)

(2

The application-level write amplification (ALWA) is the flash write rate divided by the
miss rate, since each miss should ideally write exactly one object. Hence, for the baseline:

ALWApaseline = fbaseline = w, (48)

Mpaseline
which matches our expectations for set-associative designs, since w is just the size of each
set.

4.2.2 Add KLog, no admission policies

Next we add KLog, a log-structured cache, in front of KSet, as shown in Fig. 4.4b. KLog’s
operation in our simple model is to buffer objects until full, and then flush the log’s contents
to KSet.

Transition rates: The transition rate O —) with KLog is the same as O — W in the
baseline, since the only difference is that objects are written to KLog instead of KSet.

In our simplified Markov model, KLog flushes all objects in KLog to KSet when KLog
is completely full, i.e., it has ¢ objects. KLog starts with 0 objects and each miss inserts
one object, so KLog is half-full when an object is admitted on average. Therefore, on
average, q/2 objects need to be inserted until the next flush, and the transition rate from

Q— Wis % = 277”. Finally, the transition rate from W — O is the same as the baseline.

36

Stationary probabilities:

2m m
o= ~ 4.9
.0 qr; +2m+2swr; m4swr; (4.9)
qr;
i,Q = 4.10
TiQ qr; +2m + 2swr; ()
2 f
W il (411)

B qr; +2m+ 2swr;

The approximation for m; o holds when ¢ < sw (i.e., when KLog is much smaller than
KSet). We find that Eq. 4.9 is the same as Eq. 4.4, demonstrating that adding KLog does
not significantly affect the probability an object is out-of-cache, so long as KLog is small.

Miss ratio: As a result, the miss ratio does not change either:

MKLog-only = Z T 5,0 (412)

=3 n 2m (4.13)

m

A T X ———— (4.14)

= Mpaseline (4 1 5)

Flash write rate: Writes are much cheaper with KLog. Since log-structured caches write
out objects sequentially in batches, newly admitted objects to KLog only write one object
to flash per miss. Hence the write-cost of O — @) edge is 1.

Writes to KSet are also cheaper because, even though w objects are still written to
flash at a time, these writes are amortized across all objects in KLog that map to the same
set. The number of objects admitted to each set is a balls-and-bins problem. Specifically,
it follows a binomial distribution X ~ B(gq,1/s). Each transition is amortized across
E[B|B > 1] objects, as KSet only writes the set if at least one object is admitted. The
total flash write rate is:

2m w
ogonly = > Ti Mo 14 g 4.16
fKLg ly ZT 74,0 + q Ti,Q]E[X|X21] ()

i

Which means every object suffers write amplification of:

w
ALVVAKLog-only =1+ E

EXXST (4.17)

37

Deriving Eq. 4.17 in detail:

[— Z Tis2me L4+ S qri - greresT)
Y - qr; + 2m + 2swr;
_ (14 w o Z 2mr;
B E[X|X > 1] — qr; + 2m + 2swr;

w
=11 TIvVIiv < 11 og-on
(*E[wazu) Loy

This means that KLog is responsible for 1 object write, and the rest of the writes come
from KSet.

4.2.3 Add threshold admission before KSet

Next, we consider the impact of adding Kangaroo’s threshold admission policy (Sec. 4.3.3),
which only admits objects to a set in KSet if at least n objects map to that set. For instance,
a threshold of 2 means that if KLog has only one object mapping to a set, then that object is
discarded (evicted) instead of being inserted into KSet. To represent threshold admission,
we add an edge in the Markov model (Fig. 4.4c) back from ¢ — O, denoting the discarded
objects.

Transition rates: We denote the probability that a set has at least n objects mapped to it
during a flush of KLog as 7(n). The exact value of 7 can be computed from the binomial
distribution, X, where X ~ Binomial(g,1/s) given that there is one object mapping the
the set, i.e., X > 1. Since objects are admitted to KSet if there are greater than n:

_ FX(”)
) =%y

the probability that X has a value greater than n given that X has a value greater than 1.

The stream of objects flushed from KLog are split between the transition ¢) — O and
@@ — W. The added edge back from) — O, represents the 1 — 7 fraction of the discarded
objects. The remaining 7 fraction transition () — W as before. For the Markov model,
the transition probabilities along those edges are multiplied by their probability.

The admission policy also reduces the admission rate to state W, which in turn causes
an object to spend more time in state W. This is reflected in the transition rate W — O,
which is scaled by 7.

(4.18)

Stationary probability and miss ratio: Threshold admission adds an edge, which causes the
stationary equations to be more complicated:

1= 5,0 + T5,Q + W (419)
2m (1 —
T 7Ti70 = m 7Ti,W + M 7Ti,Q (420)
Sw q
2
DT =" g (4.21)

Sw

38

Surprisingly, the threshold admission policy does not change the stationary probabilities
in the Markov model. Hence, the miss ratio is also unchanged:

Mthreshold — T KLog-only = Mpaseline (422)

Flash write rate: Threshold admission further reduces the write rate in two ways: (i) ob-
jects are less likely to enter KSet at all; and (i7) the write-cost of KSet is reduced because at
least n objects are written. This is reflected in the flash write rate and write amplification:

2mT w

restold = 3 T M0+ L+ T Mg 4.23
Jfthreshold iT mo- 1+ .0 E[X|X > 7] ()

w
AIWAhreshold = 1 + =————— - 4.24
threshold +E[X\X2n] T ()

This formula is derived similar to Eq. 4.17 above. Note that the ALWA can be easily read
off from Fig. 4.4 at a glance by “following the write loop” from O back to O, adding up
write costs for each edge and scaling them by their transition rate relative to KLog-only;
e.g., by a factor of 7 for the second term.

Kangaroo’s threshold admission policy thus greatly decreases ALWA in KSet’s set-
associative design by guaranteeing a minimum level of amortization on all flash writes.

4.2.4 Add probabilistic admission before KLog

The above techniques — KLog and threshold admission — are Kangaroo’s main tricks to
reduce flash writes. However, the design thus far always has write amplification at least
1x because all objects are admitted to KLog. It is possible to achieve write amplification
below 1x by adding an admission policy in front of KLog. We now consider the effect of
adding a probabilistic admission policy that drops objects with a probability p before they
are admitted to KLog, as shown in Fig. 4.4d.

Transition rates: If only a fraction p of objects are admitted to KLog, then the transition
rate O — (@) decreases by a factor p. This factor of p propagates to all of the other transition
rates.

Stationary probability and miss ratio: As with the threshold admission policy, stationary
probabilities and miss ratio do not change by adding a probabilistic admission policy before
KLog.

This insensitivity to admission probability reflects a limitation of the model: we as-
sume static reference probabilities, so all popular objects will eventually make it into the
cache. In practice, object popularity changes over time, so miss ratio decreases at very low
admission probabilities because the cache does not admit newly popular objects quickly
enough.

Flash write rate: The write-cost of each edge does not change, but probability of traversing
each edge changes by a factor p. Thus:

2mpT w

A 4.25
g EXX =1 (4.25)

fKangaroo = Zprl * 7,0 ¢ I+

)

39

w
AIWAKanearoo = 14 —F—F——" 4.26
s =2 (14 55757 7) 20

This equation is Theorem 1, as expected.

4.2.5 Modeling results

With a full model of Kangaroo, we can not only show the ALWA benefits of Kangaroo over
the set-associative baseline, but we can also predict the effect of different parameters on
Kangaroo’s ALWA.

Fig. 4.5 shows the effect of KLog’s size on ALWA without an admission policy. As
Kangaroo devotes more space to KLog, its ALWA greatly decreases. For instance, doubling
the percent of the cache dedicated to KLog from 2.5% to 5% decreases ALWA by up to
38%. Since the overall amount of flash dedicated to KLog is small, there is only a small
increase in DRAM overhead for this configuration of Kangaroo. Thus, even a small KLog
greatly decreases ALWA.

60 1 —— 50 B
< 100 B
% 401 —<— 200 B
< —<— 500 B
201 H\)\
0 5 10 15 20 25

KLog Size (% of flash)

Figure 4.5: Modeled ALwA in Kangaroo with different KLog sizes. Modeled ALWA
for Kangaroo with different percentages of the flash cache devoted to KLog, assuming 4 KB
sets, 100% probabilistic admission, and no admission threshold.

Fig. 4.6 shows the effect of thresholding on ALWA and KSet’s admission probability
for different object sizes using Theorem 1, keeping KLog at 5% of cache size. With no
thresholding (n = 1), no objects are rejected; but as the threshold increases more objects
are rejected (Fig. 4.6a). Also, since more objects fit in the KLog when objects are smaller,
smaller objects are more likely to be admitted. Thresholding significantly reduces ALWA
(Fig. 4.6b). Importantly, the ALWA savings are larger than the fraction of objects rejected,
unlike purely probabilistic admission. For instance, with 100 B objects, threshold n = 2
admits 44.4% of objects, but its write rate is only 22.8% of the write rate with threshold
n=1.

The ALWA results are consistent with results in our experiments (Sec. 4.5), giving us
confidence when using the model to explore the ALWA design space.

40

100
el 301
2
=] g ‘
€ 501 =207 N
o = \
X | N
1 2 3 4 1 2 3 4
Threshold Threshold
(a) Percent of objects admitted. (b) ALWA.

Figure 4.6: Modeled AtwA in Kangaroo with different thresholds. Modeled (a)
admission percentage and (b) ALWA for Kangaroo with different threshold values and object
sizes, assuming 4 KB sets and KLog w/ 5% of capacity.

4.3 Kangaroo Design

This section describes the techniques introduced in KLog and KSet to reduce DRAM, flash
writes, and miss ratio.

4.3.1 Pre-flash admission to KLog

Like previous flash caches, Kangaroo may not admit all objects evicted from the DRAM
cache [60, 86, 87, 105, 108, 110]. It has a pre-flash admission policy that can be configured
to randomly admit objects to KLog with probability p, decreasing Kangaroo’s write rate
proportionally without additional DRAM overhead. Compared to prior designs, Kangaroo
can afford to admit a larger fraction of objects to flash than prior flash caches due to its
low ALWA; in fact, except at very low write budgets, Kangaroo admits almost all objects
to KLog.

4.3.2 KLog

KLog’s role is to minimize the flash cache’s ALWA without requiring much DRAM. To ac-
complish this, it must support three main operations: LOOKUP, INSERT, and ENUMERATE-
SET. ENUMERATE-SET allows KLog to find all objects mapping to the same set in KSet.
LOOKUP and INSERT operate similarly to a conventional log-structured cache with an ap-
proximate index. However, the underlying data structure is designed so that ENUMERATE-
SET is efficient and has few false positives.

Operation. Like other log-structured caches, KLog writes objects to a circular buffer
on flash in large batches and tracks objects via an index kept in DRAM. To support
ENUMERATE-SET efficiently, KLog’s index is implemented as a hash table using separate
chaining. Each index entry contains an offset to locate the object in the flash log, a
tag (partial hash of the object’s key), a next-pointer to the next entry in the chain (for
collision resolution), eviction-policy metadata (described in Sec. 4.3.4), and a valid bit.

41

Partitions ___Partitions Partitions
hash(key) I e @
Tables @ Tables Tables @
) Eaglnext] /
Set N taginext| N
e ®< [Inext]] offset[tagnext \% b BBlhext 0
DRAM offsetiEB] | i
Flash @ ‘/@> KSet
=
KLog I |
(a) KLog lookup. (b) KLog insertion. (c) KLog eviction.

Figure 4.7: Overview of KLog operations. KLog allows for lookup, insertion, and
eviction of objects.

LooKUP: To look up a key (Fig. 4.7a), @ KLog determines which bucket it belongs to by
computing the object’s set in KSet. @ KLog traverses index entries in this bucket, ignoring
invalid entries, until a tag matches a hash of the key. If there is no matching tag, KLog
returns a miss. @ KLog reads the flash page at offset in the log. After confirming a full
key match, KLog returns the data and updates eviction-policy metadata.

INSERT: To insert an object (Fig. 4.7b), @ KLog creates an index entry, adds it to the
bucket corresponding to the key’s set in KSet, and appends the object to an in-DRAM
buffer. The on-flash circular log is broken into many segments, one of which is buffered in
DRAM at a time. @ Once the segment buffer is full, it is written to flash.

ENUMERATE-SET: The ENUMERATE-SET(x) operation returns a list of all objects cur-
rently in KLog that map to the same set in KSet as object x. This operation is efficient
because, by construction, all such objects will be in the same bucket in KLog’s index. That
is, KLog intentionally exploits hash collisions in its index so that it can enumerate a set
simply by iterating through all entries in one index bucket.

Internal KLog structure. As depicted in Fig. 4.7, KLog is structured internally as
multiple partitions. Each partition is an independent log-structured cache with its own
flash log and DRAM index. Moreover, each partition’s index is split into multiple tables,
each an independent hash table.

This partitioned structure reduces DRAM usage, as described next, but otherwise
changes the operation of KLog little. The table and partition are inferred from an ob-
ject’s set in KSet. Hence, all objects in the same set will belong to the same partition,
table, and bucket; and operations work as described above within each table.

Reducing DRAM usage in KLog. Table 5.3 breaks down Kangaroo’s DRAM usage
per object vs. a naive log-structured design as a standalone cache (“Naive Log-Only”) and
as a drop-in replacement for KLog (“Naive Kangaroo”).

The flash offset must be large enough to identify which page in the flash log contains
the object, which requires log,(LogSize/4 KB) bits. By splitting the log into 64 partitions,
KLog reduces LogSize by 64x and saves 6 b in the pointer.

42

Component Naive Log-Only Naive Kangaroo Kangaroo
w» offset 29b 25b 19b
< tag 29D 29b 9b
S next-pointer 64b 64b 16b
¥ Eviction metadata 67b 58b 3b
= valid 1b 1b 1b
M Sub-total 190 bits/obj 177 bits/obj 48 bits/obj
- Bloom filter - 3b 3b
2 Eviction - 5b 1b
M Sub-total - 8 bits/obj 4 bits/obj
— Index buckets ~ 3.1b ~ 3.1b ~ 0.8b
g Log size 100% = 181b 5% = 8.9b 5% = 2.4b
> Set size 0% 95% = 7.6b 95% = 3.8b
© Total 193.1 bits/obj 19.6 bits/obj 7.0 bits/obj

Table 4.2: DRAM overhead in Kangaroo. Breakdown of DRAM per object for a
2TB cache, comparing Kangaroo to a naive log-structured cache and Kangaroo with a
naive log index. Bucket and LRU overhead assume 200 B objects.

The tag size determines the false-positive rate in the index; i.e., a smaller tag leads to
higher read amplification. KLog splits the index into 22° tables. Since the table is inferred
from the key, all keys in one table effectively share 20b of information, and KLog can use
a much smaller tag to achieve the same false positive rate as the naive design.?

KLog’s structure also reduces the next-pointer size. We only need to know the offset
into memory allocated to the object’s index table. Thus, rather than using a generic
memory pointer, we can store a 16b offset, which allows up to 2!¢ items per table. KLog
can thus index 2% items as parameterized (12.5 TB of flash with 200 B objects), which can
be increased by splitting the index into more tables.

In a naive cache using LRU eviction, each entry keeps a pointer to adjacent entries in
the LRU list. This requires 2 - log,(LogSize/ObjectSize) bits. In contrast, Kangaroo’s
RRIParoo policy (Sec. 4.3.4) is based on RRIP [133] and only needs 3 b per object in KLog
(and even less in KSet).

Finally, each bucket in KLog’s index requires one pointer for the head of the chain.
In naive logs, this is a 64 b pointer. In KLog, it is a 16 b offset into the table’s memory.
KLog allocates roughly one bucket per set in KSet. With 4 KB sets and 200 B objects, the
per-object DRAM overhead is 3.1b (Naive) or 0.8 b (KLog) per object.

All told, KLog’s partitioned structure reduces the per-object metadata from 190b to
48 b per object, a 3.96x savings vs. the naive design. Compared to prior index designs,
KLog’s index uses slightly more DRAM per object than the state-of-the-art (30 b per object
in Flashield [105]), but it supports ENUMERATE-SET and has fewer false positives. Most
importantly, KLog only tracks =5% of objects in Kangaroo, so indexing overheads are just
3.2b per object. Adding KSet’s DRAM overhead gives a total of 7.0b per object, a 4.3x

'Processor caches reduce tag size vs. a fully associative cache similarly; each index table in KLog
corresponds to a “set” in the processor cache.

43

improvement over the state-of-the-art.

4.3.3 KLog — KSet: Minimizing flash writes

Write amplification in KLog is not a significant concern because it has a ALWA close to 1x
and writes data in large segments, minimizing DIWA. However, KSet’s write amplification
is potentially problematic due to its set-associative design. Kangaroo solves this by using
KLog to greatly reduce ALWA in KSet: namely, by amortizing each flash write in KSet
across multiple admitted objects.

Moving objects from KLog to KSet. A background thread keeps one segment free
in each log partition. This thread flushes segments from the on-flash log in FIFO order,
moving objects from KLog to KSet as shown in Fig. 4.7c. For each victim object in the
flushed segment, this thread @ calls ENUMERATE-SET to find all other objects in KLog
that should be moved with it; if there are not enough objects to move (see below), the
victim object is dropped or, if popular, is re-admitted to KLog; otherwise, the victim
object and all other objects returned by ENUMERATE-SET are moved from KLog to KSet
in a single flash write.

Instead of flushing one segment at a time, one could fill the entire log and then flush
it completely. But this leaves the log half-empty, on average. Flushing one segment at
a time keeps KLog’s capacity utilization high, empirically 80-95%. Incremental flushing
also increases the likelihood of amortizing writes in KSet, since each object spends roughly
twice as long in KLog and is hence more likely to find another object in the same set when

flushed.

Threshold admission to KSet. Kangaroo amortizes writes in KSet by flushing all ob-
jects in the same set together, but inevitably some objects will be the only ones in their set
when they are flushed. Moving these objects to KSet would result in the same excessive
ALWA as a naive set-associative cache. Thus, Kangaroo adds an admission policy between
KLog and KSet that sets a threshold, n, of objects required to write a set in KSet. If
ENUMERATE-SET(z) returns fewer than n objects, then z is not admitted to KSet.

To avoid unnecessary misses to popular objects that do not meet the threshold when
moving from KLog to KSet, Kangaroo readmits any object that received a hit during its
stay in KLog back to the head of the log. This lets Kangaroo retain popular objects while
only slightly increasing overall write amplification (due to KLog’s minimal ALWA).

4.3.4 KSet

KSet’s role is to minimize the overall DRAM overhead of the cache. KSet employs a
set-associative cache design similar to CacheLib’s Small Object Cache [60]. This design
splits the cache into many sets, each holding multiple objects; by default, each set is 4 KB,
matching flash’s read and write granularity. KSet maps an object to a set by hashing its
key. Since each object is restricted to a small number of locations (i.e., one set), an index
is not required. Instead, to look up a key, KSet simply reads the entire set off flash and
scans it for the requested key.

44

To reduce unnecessary flash reads, KSet keeps a small Bloom filter in DRAM built
from all the keys in the set. These Bloom filters are sized to achieve a false positive rate
of about 10%. Whenever a set is written, the Bloom filter is reconstructed to reflect the
set’s contents.

RRIParoo: Usage-based eviction without a DRAM index. Usage-based eviction
policies can significantly improve miss ratio, effectively doubling the cache size (or more)
without actually adding any resources [58, 61, 67, 133, 229]. Unfortunately, implementing
these policies on set-associative flash caches is hard, as such policies involve per-object
metadata that must be updated whenever an object is accessed. Since KSet has no DRAM
index to store metadata and cannot update on-flash metadata without worsening ALWA,
it is not obvious how to implement a usage-based eviction policy. For these reasons, most
flash caches use FIFO eviction [4, 5, 7, 24, 60, 78, 111, 118, 219, 245], which keeps no
per-object state. Unfortunately, FIFO significantly increases miss ratio because popular
objects continually cycle out of the cache.

Kangaroo introduces RRIParoo, a new technique to efficiently support usage-based
eviction policies in flash caches. Specifically, RRIParoo implements RRIP [133], a state-
of-the-art eviction policy originally proposed for processor caches, while using only /1 bit
of DRAM per object and without any additional flash writes.

Background: How RRIP works. RRIP is essentially a multi-bit clock algorithm: RRIP
associates a small number of bits with each object (3 bits in Kangaroo), which represent
reuse predictions from NEAR reuse (000) to FAR reuse (111). Objects are evicted only once
they reach FAR. If there are no FAR objects when something must be evicted, all objects’
predictions are incremented until at least one is at FAR. Objects are promoted to NEAR
(000) when they are accessed. Finally, RRIP inserts new objects at LONG (110) so they
will be evicted quickly, but not immediately, if they are not accessed again. This insertion
policy handles scans that can degrade LRU’s performance.

RRIParoo’s key ideas. There are two ideas to support RRIP in KSet. First, rather than
tracking all of RRIP’s predictions in a DRAM index, RRIParoo stores the eviction meta-
data in flash and keeps only a small portion of it in DRAM. Second, to reduce DRAM
metadata to a single bit, we observe that RRIP only updates predictions upon eviction (in-
crementing predictions towards FAR) and when an object is accessed (promoting to NEAR).
Our insight is that, so long as KSet tracks which objects are accessed, promotions can be
deferred to eviction time, so that all updates to on-flash RRIParoo metadata are only made
at eviction, when the set is being re-written anyway. Hence, since KSet can track whether
an object has been accessed using only single bit in DRAM, KSet achieves the hit-ratio of
a state-of-the-art eviction policy with one-third of the DRAM usage (1b vs. 3b).

RRIParoo operation. RRIParoo allocates enough metadata to keep one DRAM bit per
object on average; e.g., 40b for 4 KB sets and 100 B objects. Objects use the bit corre-
sponding to their position in the set (e.g., the i*®® object uses the i*" bit), so there is no
need for an index. If there are too many objects, RRIParoo does not track hits for the
objects closest to NEAR, as they are least likely to be evicted.

Kangaroo also uses RRIP to merge objects from KLog. Tracking hits in KLog is trivial

45

(1) Start (2) (3) 4)

i Bloomfilters | ypdate |Increment| Merge
Compaction AN P 9

[e[6] [E[6]
-l RRIP bits

Flash Al4 Al7 cla
Blo B0 D[3
cl1 cla Fl1
Do D|3 B0

KLog KSet

Figure 4.8: Kangaroo’s RRIParoo eviction policy. RRIParoo implements RRIP
eviction with only =~1b in DRAM per object and no additional flash writes.

because it already has a DRAM index. Objects are inserted into KLog at LONG prediction
(like usual), and their predictions are decremented towards NEAR on each subsequent
access. Then, when moving objects from KLog to KSet, KSet sorts objects from NEAR to
FAR and fills up the set in this order until out of space, breaking ties in favor of objects
already in KSet.

Example: Fig. 4.8 illustrates this procedure, showing how a set is re-written in KSet. (D We
start when KLog flushes a segment containing object F, which maps to a set in KSet. KLog
finds a second object, E, elsewhere in the log that also maps to this set. Meanwhile, the
set contains objects ., 2, C, and D with the RRIP predictions shown on flash, and & has
received a hit since the set was last re-written, as indicated by bits in DRAM. @ Since

received a hit, we promote its RRIP prediction to NEAR and clear the bits in DRAM.
@ Since no object is at FAR, we increment all objects’ predictions by 3, whereupon object

reaches FAR. @ Finally, we fill up the set by merging objects in DRAM and flash in
prediction-order until the set is full. The set now contains =, F, D, and C; * was evicted,
and E stays in KLog for now since its KLog segment was not flushed. (The set on flash is
only written once, after the above procedure completes.)

DRAM usage. As shown in Table 5.3, KSet needs up to 4 bits in DRAM per object:
one for RRIParoo and three for the Bloom filters. Combined with the DRAM usage of
KLog that contains about 5% of objects, Kangaroo needs ~7.0b per object, 4.3x less
than Flashield [105]. Moreover, the 1b per object DRAM overhead for RRIParoo can be
lowered by tracking fewer objects in each set. Taken to the extreme, this would cause the
eviction policy to decay to FIFO, but it allows Kangaroo to adapt to use less DRAM if
desired.

4.4 Experimental Methodology

This section describes the experimental methodology that we use for to evaluate Kangaroo
in Sec. 4.5.

46

4.4.1 Kangaroo implementation and parameterization

We implement Kangaroo in C++ as a module within the CacheLib caching library [60].
Table 5.4 describes Kangaroo’s default parameters; we evaluate sensitivity to these param-
eters in Sec. 4.5.3.

Parameter Value
Total cache capacity 93% of flash
Log size 5% of flash
Admission probability to log from DRAM 90%
Admission threshold to sets from log 2

Set size 4KB

Table 4.3: Kangaroo’s default parameters.

4.4.2 Comparisons

We compare Kangaroo to (1) CacheLib’s small object cache (SOC), a set-associative design
that currently serves the Facebook Social Graph [71] in production; and (7i) an optimistic
version of a log-structured cache (LS) with a full DRAM index. For LS, we configure KLog
to index the entire flash device and use FIFO eviction.

We run experiments on two 16-core Intel Xeon CPU E5-2698 servers running Ubuntu
18.04, one with 64 GB of DRAM and one with 128 GB of DRAM. We use Western Digital
SN840 drives with 1.92'TB rated at three device-writes per day. This flash drive gives a
sustained write budget of 62.5 MB/s. We chose these configurations to be similar to those
deployed in the large-scale production clusters that contributed traces to this work, but
with extra DRAM to let us explore large log-structured caches.

Except where noted, all experiments are configured to stay within 16 GB of DRAM
(all-inclusive — DRAM cache, index, etc.); 62.5 MB/s flash writes, as measured directly
from the device (i.e., including DLWA); and 100 K requests/s, similar to what is achieved
by flash caches in production [60, 69]. To mimic a memory-constrained system, we limit
LS’s flash capacity to the maximum allowed by a 16 GB index assuming 30 b/object, the
best reported in the literature [105], but also grant LS an additional 16 GB for its DRAM
cache. Note that this is optimistic for LS, as DRAM is LS’s main constraint. We use
this variant as we were unable to compare to state-of-the-art systems: the source code of
Flashield [105] is not available, and we were unable to run FASTER [78| as a cache. All
systems use CacheLib’s probabilistic pre-flash admission policy.

4.4.3 Simulation

To explore a wide range of parameters and constraints, we implemented a trace-driven cache
simulator for Kangaroo. The simulator measures miss ratio and application-level write
rate. We estimate device-level write amplification based on our results in Sec. 2.2.4, using
a best-fit exponential curve to the DLWA of random, 4 KB writes for SOC and Kangaroo,

47

and assuming a DLWA of 1x (no write amplification) for LS. Note that this is pessimistic
for Kangaroo, since writes to KLog incur less DLWA than SOC. Comparing the results with
our experimental data shows the simulator to be accurate within 10%. The simulator does
not implement some features of CacheLib including promotion to the memory cache, which
can affect miss ratios, but we have found it able to give a good indication of how the full
system would perform as parameters change.

4.4.4 Workloads

Our experiments use sampled 7-day traces from Facebook [60] and Twitter [261]. These
traces have average object sizes of 291 B and 271 B, respectively. For systems experiments,
we scale the Facebook trace to achieve 100K reqgs/s by running it 3x concurrently in
different key spaces.

The simulator results use sampled-down traces, and we scale-up the measurements to
a full-server equivalent based on the server’s flash capacity and desired load as described
below, Sec. 4.4.6. We use 1% of the keys for the Facebook trace and 10% of the keys for
the Twitter trace. Unless otherwise noted, we report numbers for the last day of requests,
allowing the cache to warm up and display steady-state behavior.

4.4.5 Metrics

Kangaroo is designed to balance several competing constraints that limit cache effective-
ness. As such, our evaluation focuses on cache miss ratio, i.e., the fraction of requests that
must be served from backend systems, under different constraints. We further report on
Kangaroo’s raw performance, showing it is competitive with prior designs.

4.4.6 Scaling traces

Our scaling methodology allows us explore a wide range of system parameters in simulation.
This methodology builds on prior analysis of scaling caches [56, 57, 152, 185, 217, 246],
and Table 4.4 summarizes its key parameters.

The model involves three free parameters that let us: (i) choose the load on each
server; (ii) choose the flash cache size on each server; and (%i7) down-sample requests
to accelerate simulations. Moreover, the methodology incorporates three constraints to
exclude infeasible configurations: request throughput, flash write rate, and DRAM usage.

Goals for scaling traces. The starting point for our methodology is a trace collected
from a real, production system. For simplicity and without loss of generality, we assume
that the trace is gathered from a single caching server. This trace’s requests arrive at a
rate R, (measured in, e.g., requests/s).

The goal of our methodology is to use this trace to explore other system configurations.
In particular, we want to explore caching systems with fewer or more caching servers and
with different amounts of resources at each individual server. We do this by modeling the
performance of a single server in the desired system configuration. Last but not least, we

48

Param Description

R Request rate.

4 Relative load factor.

S Flash cache size.

w App-level write rate (w/out DLWA).
D Device-level write rate.

k Trace sampling rate.

Q Per-server DRAM capacity.

To Param x in original system.
Tm Param z in modeled system.
Ts Param x in simulated system.

Table 4.4: Key parameters in trace scaling methodology.

want to be able to do this efficiently, i.e., without needing to actually duplicate the original
production system, by running scaled-down simulations.

Load factor and request rate per server. The first choice in the methodology is the
load factor on each server, which changes the number of servers in the cluster. In the
original system, each server serves requests at a rate R, — by increasing or decreasing this
rate, we effectively scale the number of caching servers that are needed to serve all user
requests.

The parameter ¢ sets the relative load factor at each server. That is, the request rate
at each server in the modeled system is

Ry =10 R, (4.27)

and the total number of caching servers in the modeled system scales o< 1/7.

The load factor is clearly an important parameter. In general, a higher load factor is
desirable, as higher load reduces the number of servers needed to serve all user requests.
However, load factor is constrained by the maximum request throughput at a single server
Rax. Specifically, the maximum load factor is

gmax = Rmax/Ro- (428)

Higher load factors may also not be desirable because higher load increases flash write
rate and, at a fixed cache size per server, increases miss ratio. Hence, the best load factor
will depend on a number of factors, including properties of the trace like object size and
locality (i.e., miss ratio curve).

Flash cache size. The next choice is the per-server flash cache size, S,,. This is a free
parameter constrained only by flash write rate and the size of the flash device. (A log-
structured cache size is also constrained by DRAM, as discussed below.)

This parameter is significant because it determines the miss ratio at each server. A
bigger cache is usually better, until write amplification or DRAM usage exceed the server’s
constraints. For a given cache design, at cache size Sy, it will achieve miss ratio of m,(Sn)

49

and a flash write rate (excluding DLWA) of
Wi < My (Sm) - R (4.29)

The miss ratio m(.S) depends on the system, because load factor varies between systems.
Application-level write rate W is scaled by a design-specific factor corresponding to the
cache design’s ALWA — this factor is large for set-associative designs like SOC, smaller for
Kangaroo, and essentially 1x for log-structured caches like LS.

The maximum cache size Sp.x is determined from the flash-write constraint, D, ..
Specifically, we multiply the application-level flash write rate W, by the estimated DLWA
to get the device-level write rate D,,. We then sweep the flash cache size Sy, to find the
sizes that stay within the constraint. Increasing cache size has two competing effects on
write rate: larger caches generally have fewer misses, leading to fewer insertions, but they
also suffer higher DLWA, increasing the cost of each insertion. As a result, the maximum
size usually lies on the “knee” of the DLWA curve (see Fig. 2.5), though which size hits the
knee depends on the cache design (via ALWA), the load factor (via Ry,), and the trace itself
(via my,).

We are now ready, in principle, to run experiments to model the desired system. By
replaying the original trace, which has a request rate of R,, we are simulating a system at
1/l-scale of the desired system (since R, = R,,/¢). We therefore need to scale the cache
size in our experiments by the same factor, simulating a cache of size Ss = S,,,/¢. (This is
why increasing load factor can hurt miss ratio: all else equal, a larger load factor reduces
effective cache capacity.) We can then interpret results by scaling them up by a factor ¢,
e.g., rescaling the measured write rate W to report a modeled write rate of Wy, = ¢ - Wi.
We can accelerate experiments further by employing the same trick more aggressively.

Accelerating simulations by sampling down. To speedup simulation, we downsample
the original trace by pseudorandomly selecting keys to produce a new, sampled trace that
we will use in the actual simulation experiments. This trace has a request rate of Ry,
yielding an empirically measured sampling rate of

k=R./R, (4.30)

Downsampling by £ < 1 makes simulations take many fewer requests and also lets simu-
lated flash capacity fit in DRAM, significantly accelerating each experiment.
We must scale down the other resources in the system to match the downsampled trace.

The simulated cache size is
Ss = k- Sh,. (4.31)

With this scaling, simulated write rate needs to be scaled up by 1/k to compute the
modeled system’s write rate

Wi = W /k. (4.32)
However, simulated miss ratio does not change
M (Sm) = My (Ss/k) = mg(Ss). (4.33)

(Miss ratio is invariant under sampling because it is the ratio of rates, so the scaling factors
cancel.)

50

DRAM constraints per server. In addition to other constraints, systems are con-
strained in their DRAM usage. This is particularly important for log-structured caches
like LS, but every system includes a DRAM cache that has a (modest) impact on results.
We enforce DRAM constraints by observing that the DRAM : flash ratio should be held
constant between the simulated and modeled system. So, given a fixed DRAM capacity in
the modeled system @, (e.g., 16 GB), the flash cache size in the modeled system S,,, and
the simulated flash cache size S, it is trivial to compute the simulated DRAM budget:

_ @nSs

=g
For each simulation, we compute the DRAM overhead for that cache design (e.g., for

its DRAM index and Bloom filters), and use the remaining DRAM capacity as a DRAM

cache. For LS, flash cache size is often limited by DRAM usage, not the flash write rate or
device size.

Qs

(4.34)

The methodology in practice. The above describes the methodology from a top-down
perspective, starting from the decisions that have the largest impact on performance and
cost. In practice, we use this methodology to understand the parameter limitations for the
simulator. Then, the scaling methodology is applied in the opposite direction, starting from
the parameters of a specific simulation experiment and backing out the modeled system
configuration for any given simulation.

Specifically, we run each simulation with a DRAM capacity @), flash size Sg, and trace
sampled at rate k. These experiments produce a miss ratio mg(Ss) and application-level
flash write rate Wj.

Then, given a fixed DRAM budget in the modeled system (), we compute the full
properties of the modeled caching system. We compute the size of the modeled flash cache

as
Sm = Qis‘
QS
This is the flash cache size that respects the modeled DRAM constraint and keeps DRAM : flash
ratio constant. Moreover, to maintain miss ratio, the ratio of cache sizes Sy, /S5 must equal
the ratio of request rates R,,/Rs. We want to model a system receiving R,, = ¢ - R, re-
quests, but actually run a simulation with Ry = k - R, requests. Hence, the load factor

1S
Sm

(4.35)

R

(= k=—Fk 4.36
Ry Sy (4:36)
yielding a modeled request rate of
S
Ry = —Rs 4.37
- (437
Finally, we scale the write rate and estimate DILWA for size S,
W
Dy, = DLWA(Sy,) - - (4.38)

This methodology lets us run short simulations to estimate the behavior of a wide range
of modeled caching systems, while obeying constraints faced by production servers.

51

0.6

0.5 A1

0.4

0.3 4

Miss Ratio

0.2
LS

014+ — SA
Kangaroo

0.0 T
0 1 2 3 4 5 6 7

Days

Figure 4.9: Miss ratio over time. Miss ratio for all three systems over a 7-day Facebook
trace. All systems are run with 16 GB DRAM, a 1.9 TB drive, and with write rates less
than 62.5 MB/s.

4.5 FEvaluation

This section presents experimental results from Kangaroo and prior systems. We find that:
(i) Kangaroo reduces misses by 29% under realistic system constraints. (i) Kangaroo
improves the Pareto frontier when varying constraints. (i) In a production deployment,
Kangaroo reduces flash-cache misses by 18% at equal write rate and reduces write rate by
38% at equal miss ratios. We also break down Kangaroo by technique to see where its
benefits arise.

4.5.1 Main result: Kangaroo significantly reduces misses vs. prior
cache designs under realistic constraints

Kangaroo aims to achieve low miss ratios for tiny objects within constraints on flash-device
write rate, DRAM capacity, and request throughput. This section compares Kangaroo
against SOC and LS on the Facebook trace, running our CacheLib implementation of each
system under these constraints. We configure each cache design to minimize cache miss
ratio while maintaining a device write rate lower than 62.5 MB/s and using up to 16 GB
of memory and 1.9 TB of flash. Later sections will consider how performance changes as
these constraints vary.

Miss ratio: Fig. 4.9 shows that Kangaroo reduces cache misses by 29% vs. SOC and by
56% vs. LS. This is because Kangaroo makes effective use of both limited DRAM and flash
writes, whereas prior designs are hampered by one or the other. Specifically, SOC is limited
primarily by its high write rate, which forces it to admit a lower percentage of objects to
flash and to over-provision flash to reduce device-level write amplification. SOC uses only
81% of flash capacity. Similarly, LS is limited by the reach of its DRAM index. LS warms
up as quickly as Kangaroo until it runs out of indexable flash capacity at 61% of device

52

capacity, even though we provision LS extra DRAM for both an index and DRAM cache
(Sec. 4.4.2).

By contrast, Kangaroo uses 93% of flash capacity, increasing cache size by 15% vs. SOC
and by 52% vs. LS. On top of its larger cache size, Kangaroo’s has lower ALWA than SOC
and its RRIParoo policy makes better use of cache space.

Request latency and throughput: Kangaroo achieves reasonable throughput and tail
latencies. When measuring flash cache performance without a backing store, Kangaroo’s
peak throughput is 158 K gets/s, LS’s is 172 K gets/s, and SOC’s is 168 K gets/s. Kangaroo
achieves 94% of SOC’s throughput and 91% of LS’s throughput, and it is well above typical
production request rates [60, 69, 253].

In any reasonable caching deployment, request tail latency will be set by cache misses
as they fetch data from backend systems. However, for completeness and to show that
Kangaroo has no performance pathologies, we present tail latency at peak throughput.
Kangaroo’s p99 latency is 736 s, LS’s is 229 ps, and SOC’s is 699 ps. All of these latencies
are orders-of-magnitude less than typical SLAs [2, 3, 69, 267|, which are set by backend
databases or file systems. For instance, in production, the p99 latency in Facebook’s
social-graph cache is 51 ms and Twitter’s is 8 ms, both orders-of-magnitude larger than
Kangaroo’s p99 latency. In addition, Kangaroo might reduce p99 latency in practice,
because its improved hit ratio reduces load on backend systems.

4.5.2 Kangaroo performs well as constraints change

Between different environments and over time, system constraints will vary. Using our
simulator, we now evaluate how the cache designs behave when changing four parameters:
device write budget, DRAM budget, flash capacity, and average object size.

Device write budget. Device write budgets change with both the type of flash SSD
and the desired lifetime of the device. To explore how this constraint affects miss ratio,
we simulate the spread of miss ratios we can achieve at different device-level write rates.
To change the device-level write rate, we vary both the utilized flash capacity percentage
and the admission policies for all three systems while holding the total DRAM and flash
capacity constant. Note that LS can never use the entire device in these experiments,
because its index is limited by DRAM capacity.

Figure 4.10 shows the tradeoff between device-level write rate budget and miss ratio.
At 62.5 MB/s (the default) on both the Facebook and Twitter workloads, Kangaroo consis-
tently performs better than both SOC and LS. At higher write budgets, Kangaroo continues
to have lower miss ratio. In this range, SOC suffers both due to its FIFO eviction policy
and its higher ALWA, which shifts points farther right vs. similar Kangaroo configurations.
LS is mostly constrained by DRAM capacity, which is why its achievable miss ratio does
not change above 15 MB/s for both traces. However, at very low device-level write budgets,
LS performs better than Kangaroo, because Kangaroo is designed to balance DIWA and
DRAM capacity, whereas LS focuses only on DLWA. At extremely low write budgets, Kan-
garoo’s higher DLWA (in KSet) forces it to admit fewer objects. (Kangaroo configurations

53

0.5 0.5 5

0.41 _.’\‘_g‘ 0.41
k) T—
=03 =03 T o—g—
o o
7] 7
S 0.2 S 0.2

—-e— SA —-e— SA
0.1 LS 0.1 LS
Kangaroo Kangaroo
0.0 ; . ; ; . 0.0 - - ; ; -
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Avg. Device Write Rate (MB/s) Avg. Device Write Rate (MB/s)
(a) Facebook (b) Twitter

Figure 4.10: Miss ratio vs device-level write rates. Pareto curve of cache miss ratio
at different device-level write rates under 16 GB DRAM and 2TB flash capacity. At very
low write rates, LS is best, but it is limited by DRAM from scaling to larger caches. Thus,
for most write rates, Kangaroo outperforms both systems because it can take advantage
of the entire cache capacity, has a lower write rate than SOC, and has a better eviction
policy than the other two systems.

where KLog holds a large fraction of objects, which we did not evaluate, would solve this
problem.)

DRAM capacity. Over time, the typical ratio of DRAM to flash in data-center servers is
decreasing to reduce cost [236]. Figure 4.11 compares miss ratios for DRAM capacities up
to 64 GB, holding flash-device capacity fixed at 2 TB and device-write rate at 62.5 MB/s.
DRAM capacity does not greatly affect SOC. Larger DRAM capacity allows Kangaroo to
use a larger log. Even so, both of these systems are mainly constrained by device-level
write rate. By contrast, LS is dependent on DRAM capacity. LS approaches, though does
not reach, Kangaroo’s miss ratio at 64 GB of DRAM on the Facebook trace and at 40 GB
on the Twitter trace. At this point, Kangaroo is constrained from reducing misses further
by device write rate (see Fig. 4.10).

Larger flash capacities will shift the lines right as the DRAM : flash ratio decreases.
Assuming write budget and request throughput scale with flash capacity, a 4 TB flash
device requires 60 GB DRAM to achieve the same miss ratio as a 2 TB flash device with
30 GB DRAM. This makes the left side of the graph particularly important when comparing
flash-cache designs.

Flash-device capacity. As stated in the previous section, the size of the flash device
greatly impacts miss ratio and the significance of write-rate and DRAM constraints. As
we look forward, flash devices are likely to increase while DRAM capacity is unlikely to
grow much and may even shrink [236]|. Fig. 4.12 shows the miss ratio for each system as
the device capacity changes. Each system can use as much of the device capacity as it
desires while staying within 16 GB DRAM and 3 device writes per day.

54

0.5 0.5
0.4 0.4
—o——o—o— o — oo—o——o—o o
Qo 0
=03 =03
o o
a @
S 0.2 s 0.2
—— SA —— SA
0.1 LS 0.1 LS
Kangaroo Kangaroo
0.0 " y y " " y 0.0 ; y y ; ; y
0 10 20 30 40 50 60 0 10 20 30 40 50 60
DRAM (GB) DRAM (GB)
(a) Facebook (b) Twitter

Figure 4.11: Miss ratio vs flash capacity. Pareto curve of cache miss ratio as DRAM
capacity varies from 5 to 64 GB. Flash capacity is fixed at 2TB and device write rate is
capped at 62.5MB/s. The amount of DRAM does not greatly affect SOC or Kangaroo,
which are both write-rate-constrained, but has a huge effect on LS by increasing its cache
size.

Except at smaller flash capacities, Kangaroo is Pareto-optimal across device capacities.
At smaller device capacities (<1.2TB for the Facebook trace and <1TB for the Twitter
trace), Kangaroo and SOC are increasingly write-rate-limited while LS is decreasingly
DRAM-limited. However, as flash capacity increases, LS is quickly constrained by DRAM
capacity. In contrast, Kangaroo and SOC both take advantage of the additional write
budget and flash capacity. Kangaroo is consistently better than SOC due to lower ALWA
(allowing larger cache sizes) and RRIParoo.

Object size. The final feature that we study is object sizes. Fig. 4.13 shows how miss
ratio changes for each system as we artificially change the object sizes. For each object
in the trace, we multiply its size by a scaling factor, but constrain the size to [1 B, 2 KB|.
To study the impact of cache design as object sizes change, we keep the working-set size
constant by scaling up the sampling rate (Sec. 4.4.6).

The cache designs are affected differently as object size scales. SOC writes 4 KB for
every object admitted, independent of size, so its ALWA grows in inverse proportion to
object size, and SOC is increasingly constrained by flash writes as objects get smaller.
Similarly, LS can track a fixed number of objects due to DRAM limits, so its flash-cache
size in bytes shrinks as objects get smaller. Both SOC and LS suffer significantly more
misses with smaller objects.

Kangaroo is also affected as objects get smaller, but not as much as prior designs. KSet’s
ALWA increases with smaller objects, but less than SOC. For example, as avg object size
goes from 500 B to 50 B, Kangaroo’s ALWA increases by 4x, while SOC’s ALWA increases
by 10x (Fig. 4.6). Similarly, KLog uses more DRAM with smaller objects, but, unlike LS,
Kangaroo can reduce DRAM usage by decreasing KLog’s size without decreasing overall
cache size. The tradeoff is that ALWA increases slightly (see below). Kangaroo thus scales

95

0.5 - 0.5
0.4 \ 0.4
2 \0\._ o
5 0.3 203 \\.—
o o
a @
S 0.2 s 0.2
—-— SA —— SA
0.1 LS 0.1 LS
Kangaroo Kangaroo
0.0 " y y ; " y 0.0 " y ; ; ; y
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Flash Device Capacity (GB) Flash Device Capacity (GB)
(a) Facebook (b) Twitter

Figure 4.12: Miss ratio vs device size. Pareto curve of cache miss ratio at different
device sizes. The DRAM capacity is limited to 16 GB and the device write rate to 3 device
writes/day (e.g., 62.5 MB/s for a 2TB drive).

better than prior flash-cache designs as objects get smaller: on the Twitter trace, Kangaroo
reduces misses by 7.1% vs. LS with 500 B avg object size and by 41% vs. LS with 50 B avg
object size.

4.5.3 Parameter sensitivity and benefit attribution

We now analyze how much each of Kangaroo’s techniques contributes to Kangaroo’s per-
formance and how each should be parameterized. Fig. 4.14 evaluates Kangaroo’s sensitivity
to four main parameters on the Facebook trace: KLog admission probability, KSet eviction
policy, KLog size, and KSet admission threshold. All setups use the full 2 TB device ca-
pacity and 16 GB of memory. We build up their contribution to miss ratio and application
write rate from a basic set-associative cache with FIFO eviction.

Pre-flash admission probability. Fig. 4.14a varies admission probability from 10% to
100%. As admission probability increases, write rate increases because more objects are
written to flash. However, the miss ratio does not decrease linearly with admission proba-
bility. Rather, it has a smaller effect when the admission percentage is high than when the
admission percentage is low. Since Kangaroo’s other techniques significantly reduce ALWA,
we use a pre-flash admission probability of 90%.

Number of RRIParoo bits. Fig. 4.14b shows miss ratios for FIFO and RRIParoo with
one to four bits. Although changing the eviction policy does slightly change the write
rate (because there are fewer misses), we show only miss ratio for readability. RRIParoo
with one bit suffers 3.4% fewer misses vs. FIFO, whereas RRIParoo with three bits suffers
8.4% fewer misses. Once RRIParoo uses four bits, the miss ratio increases slightly, a
phenomenon also noticed in the original RRIP paper [133]. Since three-bit RRIParoo uses
the same amount of DRAM as one-bit RRIParoo (Sec. 4.3.4), we use three bits because it

56

0.5 0.5
0.4 \ 0.41
o I
=03 =03
o o
a @
S 0.2 s 0.2
—— SA —— SA
0.1 LS 0.1 LS
Kangaroo Kangaroo
0.0 " " " " 0.0 " " " "
0 100 200 300 400 0 100 200 300 400
Average Object Size Average Object Size
(a) Facebook (b) Twitter

Figure 4.13: Miss ratio vs average object size. Pareto curve of cache miss ratio vs.
average object size. Object sizes are limited to [1 B, 2048 B]. The write rate is constrained
to 62.5 MB/s for a 2TB flash drive with 16 GB of DRAM.

achieves the best miss ratio.

KLog size. Fig. 4.14c shows that, as KLog size increases, the flash write rate decreases
significantly, but the miss ratio is unaffected (<.05% maximum difference). However, a
bigger KLog needs more DRAM for its index. Thus, KLog should be as large enough to
substantially reduce write amplification, but cannot exceed available DRAM nor prevent
using a DRAM cache. Flash writes can be further reduced via admission policies or by
over-provisioning flash capacity as needed. We use 5% of flash capacity for KLog.

KSet admission threshold. Fig. 4.14d shows the impact of threshold admission to KSet.
Thresholding reduces flash write rate up to 70.4% but increases misses by up to 72.9% at the
most extreme. Note that these results assume rejected objects are re-admitted to KLog if
they have been hit, since re-admission reduces misses without significantly impacting flash
writes. We use a threshold of 2, which reduces flash writes by 32.0% while only increasing
misses by 6.9%.

Benefit breakdown. In this configuration, Kangaroo reduces misses by 2% and decreases
application write rate by 67% vs. a set-associative cache that admits everything. Most of
the miss ratio benefits over SOC come from RRIParoo. Kangaroo also improves miss ratio
vs. SOC at a similar write rate by reducing ALWA, which allows it to admit more objects
than SOC. Each of Kangaroo’s techniques reduces write rate: pre-flash admission by 8.2%,
RRIParoo by 8.3%, KLog by 42.6%, and KSet’s threshold admission by 32.0%. Kangaroo’s
techniques have more varied effects on misses: pre-flash admission increases them by 1.9%,
RRIParoo decreases them by 8.4%, KLog changes them little (<0.05% difference), and
KSet’s threshold admission increases them by 6.9%. We found similar results on the trace
from Twitter.

57

0.5
0.4 1
o
B 0.3
o4
A
S 0.2
Percent admitted to flash
0.1
0.0 - : : . |
0 20 40 60 80 100
Write Rate (MB/s)
(a) Probabilistic admission.
0.5
0.4 1
o
.}% 03 30(o) o, o, o)
2 o 10% 5% 2% 0%
a | 20% 7% 3% 1%
S 0.2 1
0.11 KLog Percent
0.0
0 20 40 60 80 100
Write Rate (MB/s)
(c) + KLog.

Miss Ratio

o
8]

o
N

o
[

©
IN)

©
[

o
o

0.5

o
()

Miss Ratio

<
(N}

0.0

FIFO 1 2 3 4
RRIParoo Bits

(b) + RRIParoo

Threshold

20 40 60 80 100
Write Rate (MB/s)
(d) + Threshold.

Figure 4.14: Sensitivity study on Kangaroo parameters. Miss ratio vs. application-
level write rate based on various design parameters in Kangaroo: (a) KLog admission
probability, (b) RRIParoo metadata size, (¢) KLog size (% of flash-device capacity), and

(d) KSet admission threshold.

58

1.0
0.8 1
[}
= 0.6 A
©
o
B o4l
s 0. — SA equivalent WR
= SA admit all
0.2 1 —— Kangaroo equivalent WR
- Kangaroo admit all
0.0 T T T T T T
0 1 2 3 4 5 6
Days
(a) Flash miss ratio.
100 - SA equivalent WR
SA admit all
“w Kangaroo equivalent WR
s Kangaroo admit all
3
©
o
g
=
0 T
0 1 2 3 4 5 6
Days
(b) Application flash write rate.
80 A - SA w/ ML
- Kangaroo w/ ML
»
o 60
=
2
& 40 1
o
= 20 A
0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Days
(c) ML admission.

Figure 4.15: Production deployment of Kangaroo. Results from two production
test deployments of Kangaroo and SOC, showing (a) flash miss ratio and (b) application
flash write rate over time using pre-flash random admission and (c) application flash write
rate over time using ML admission. With random admission at equivalent write-rate,
Kangaroo reduces misses by 18% over SOC. When Kangaroo and SOC admit all objects,
Kangaroo reduces write rate by 38%. With ML admission, Kangaroo reduces the write
rate by 42.5%.

59

4.5.4 Production deployment test

Finally, we present results from two production test deployments on a small-object work-
load at Facebook, comparing Kangaroo to SOC. Each deployment receives the same request
stream as production servers but does not respond to users. Due to limitations in the pro-
duction setup, we can only present application-level write rate (i.e., not device-level) and
flash miss ratio (i.e., for requests that miss in the DRAM cache). In addition, both systems
use the same cache size (i.e., Kangaroo does not benefit from reduced over-provisioning).

To find appropriate production configurations, we chose seven configurations for each
system that performed well in simulation: four with probabilistic pre-flash admission and
three with a machine-learning (ML) pre-flash admission policy. The first production de-
ployment ran all probabilistic admission configurations and the second ran all ML admis-
sion configurations. Since these configurations ran under different request streams, their
results are not directly comparable, i.e. the probabilistic configurations (Fig. 4.15a and
Fig. 4.15b) cannot be compared to the ML admission configurations (Fig. 4.15¢).

Fig. 4.15a and Fig. 4.15b present results over a six-day request stream for configu-
rations with similar write rates (“equivalent WA”) as well as configurations that admit
all objects to the flash cache (“admit-all”). Kangaroo reduces misses by 18% vs. SOC in
the equivalent-WA configurations, which both have similar write rates at ~33 MB/s. The
admit-all configurations achieve the best miss ratio for each system at the cost of additional
flash writes. Here, Kangaroo reduces flash misses by 3% vs. SOC while writing 38% less.

We also tested both systems with the ML pre-flash admission policy that Facebook
uses in production [60]. Fig. 4.15¢ presents results over a three-day request stream. The
trends are the same: Kangaroo reduces application flash writes by 42.5% while achieving
a similar miss ratio to SOC. Kangaroo thus significantly outperforms SOC, independent
of pre-flash admission policy.

60

Chapter 5

FairyWREN: A Sustainable Cache for
Emerging Write-Read-Erase Flash
Interfaces

“To distract predators from nests with young birds, the superb fairywrens may
utilize a ‘rodent run’ display where they lower their head, neck and tail, hold out
their wings and fluff their feathers as they run, voicing a continuous alarm call.”

Australian Wildlife Wonders. [11]

“How do parents recognize their offspring when the cost of making a recognition
error is high? ... We discovered that superb fairy-wren (Malurus cyaneus) females
call to their eggs, and upon hatching, nestlings produce begging calls with key
elements from their mother’s “incubation call.”... We conclude that wrens use a
parent-specific password learned embryonically to shape call similarity with their
own young and thereby detect foreign cuckoo nestlings.”

Columbelli-Negrel et al. [90].

ATACENTER CARBON EMISSIONS are a topic of growing concern. At current emission
D rates, datacenters’ share of global emissions are projected to rise to 20% by 2038 [138|
and 33% by 2050 [155]. In the next few decades, many companies — including Amazon [6],
Google [13], Meta [34], Microsoft [186] — are looking to achieve Net Zero, i.e., greenhouse
gas emissions close to zero. To achieve this goal, many datacenters are adopting renewable
energy sources such as solar and wind [34, 122, 173, 186]. Google, AWS, and Microsoft are
expected to complete their transition to renewable energy by 2030 [91, 139, 165]. However,
this switch in energy source does not reduce datacenters’ embodied emissions, the emissions
produced by the manufacture, transport, and disposal of datacenter components. Embod-
ied emissions will account for more than 80% of datacenter emissions once datacenters
move to renewable energy [122].

Embodied emissions are produced by one-time lifecycle events. Datacenters can reduce
these emissions by: (i) replacing hardware with less carbon-intensive alternatives, and
(i1) extending the lifetime of components to amortize embodied emissions over a longer

61

period. Recent work has studied embodied emissions in processor design |73, 122, 123, 241],
but considerably less attention has been paid to memory and storage, even though they
constitute 46% and 40% of server emissions, respectively [173]. It is therefore crucial to
both move from carbon-intensive technologies like DRAM to flash, which has 12x less
embodied carbon per bit [123], and to extend flash lifetimes to amortize flash’s embodied
carbon.

However, flash introduces a new challenge: limited write endurance. A flash device can
only be written a limited number of times before it wears out. Each new generation of
flash has lower write endurance as a result of manufacturers packing more bits into each
cell. This packing, however, does improve sustainability by storing more capacity in the
same silicon (i.e., less carbon per bit). To realize the benefits of denser flash, applications
must write to flash much less frequently. The write-rate budgets that applications must
operate under to achieve longer lifetimes are tiny: to achieve a six-year lifetime on a 2 TB
QLC drive, the application can write only 14 MB/s, or 0.09% of available write bandwidth
(Sec. 5.1).

Reducing carbon from caching. Hence, write-intensive flash applications present a
major challenge in reducing overall datacenter emissions. This chapter focuses on reducing
carbon from flash caching, an increasingly popular use of flash in the datacenter [4, 60,
68, 69, 105, 118, 237]. We aim to demonstrate, through caching, how to leverage emerging
flash interfaces to reduce writes, in particular by re-purposing garbage collection to do
useful work.

Caching is fundamentally write-intensive, as new objects must be frequently admitted
to maintain hit rates [58, 61]. Datacenter caches also store many small objects [60, 178],
which is particularly problematic because flash can only be written at a coarse granularity.
Because of this mismatch, admitting small objects to the cache can lead to significant write
amplification: i.e., more bytes are written to the underlying flash device than requested by
the application.

Most current flash devices are Logical Block-Addressable Devices (LBAD) that present
the same block device abstraction used by hard disks. This abstraction hides significant
details about how SSDs work. In particular, while the interface allows reading and writing
4KB blocks, the underlying flash device can only erase large (MB to GB) regions. To
implement the LBAD interface, the flash firmware performs garbage collection, copying
blocks of valid data and erasing entire regions to make room for new writes. Current flash
caches, such as the research state-of-the-art Kangaroo [178, 179], have a limited ability
to optimize these internal writes, which can amplify the total bytes written by 2x to
10x [178].

Opportunity: WREN. New flash SSD interfaces, such as ZNS [66] and FDP [176],
allow closer integration of host-level software and flash management. The key difference
between these interfaces and LBAD is that these interfaces include Erase as a first-order
operation, allowing the cache to control garbage collection. We use the name Write- Read-
FErase iNterfaces (WREN) to collectively refer to such interfaces, and we describe the
necessary and sufficient operations for flash caches to minimize write rate. However, we

62

)

0 5 10 15 0.00 0.25 0.50 0.75 1.00
Emissions (kg CO,/year) Normalized Annual Cost

)

Figure 5.1: Overview of FairyWREN results. Carbon emissions and cost for flash in
Kangaroo (*), FairyWREN (%), and “minimum writes” (-)—an idealized cache with no
extra writes—over a 6-year lifetime for a production Twitter trace and a target 30% miss
ratio. Compared to Kangaroo, FairyWREN reduces carbon emissions by 33% and cost by
35%.

also show that merely porting existing flash caches to WREN does not reduce flash writes.
Flash caches must be re-designed to leverage the additional control provided by WREN.

Our solution: FairyWREN. We design and implement FairyWREN, a flash cache that
harnesses WREN to reduce writes. The main insight in FairyWREN is that every flash
write, whether from the application or from garbage collection, is an opportunity to admit
objects to the cache. When flash is written during garbage collection, FairyWREN can
admit objects “for free”. This idea cannot be realized on LBAD, since these devices offer
no control over garbage collection. FairyWREN uses the features of WREN to perform a
“nest packing” algorithm on every write, unifying cache admission and garbage collection
i a single algorithm. FairyWREN also leverages WREN to enable large-small object
separation and hot-cold set-partitioning, further reducing writes.

Summary of results. We find that, without major changes to flash interfaces and cache
designs, deploying denser flash will not reduce the carbon emissions of flash caches. For
current caching systems, the reduced write endurance of denser flash outweighs the gains
in density. Only by changing the flash interface and optimizing the cache to this new
interface can we realize the significant emissions savings of denser flash.

To illustrate this point, we implement FairyWREN as a flash cache module within
CacheLib [60]. We evaluate FairyWREN on production traces from Meta and Twitter
using both simulation and a real ZNS SSD. FairyWREN reduces flash writes by 12.5% vs.
the research state-of-the-art. By enabling caching on denser flash, FairyWREN reduces
flash’s carbon emissions by 33% vs. the research state-of-the-art (Fig. 5.1). FairyWREN
performs close to an idealized, minimum-write cache on both carbon emissions and cost.

Contributions. This chapter contributes the following:
e Critical elements of flash interfaces (Sec. 5.2): We identify the Erase operation and
control over garbage collection as the essential features of emerging flash interfaces.
We describe tradeoffs and fundamental constraints of flash interfaces, showing that
some features are, contrary to prior work, unhelpful for caching.
® Analysis of erase granularity in WREN (Sec. 5.2.4): We analyze the effect of Erase

63

Flash caches should minimize ...
Unused flash DRAM ALWA DLWA

Key-value stores
Log-structured caches
Set-associative caches
Kangaroo [178]
Fairy WREN

NENES
SRS
NENSENN
ASESRNEN

Table 5.1: Comparison of FairyWREN vs. prior cache designs. FairyWREN is the
only design to minimize all important overheads.

operation’s granularity in WREN, bridging the theoretical and systems understand-
ing of its impact on write amplification.

e FairyWREN (Sec. 5.3): FairyWREN’s key insight is to leverage emerging flash in-
terfaces to unify garbage collection and cache admission as one operation, greatly
reducing overall flash writes. FairyWREN further reduces writes by partitioning ob-
jects by size and popularity (hot vs. cold).

® Model of caching’s carbon emissions (Sec. 5.4.2): We develop a model to analyze car-
bon emissions from flash caching — incorporating both write rate and cache capacity
to determine overall flash emissions.

® Analysis of cache write amplification and its impact on emissions (Sec. 5.4.53-Sec. 5.4.7):
We show that Fairy WREN’s write reduction allows flash caches to improve sustain-
ability using denser flash for longer lifetimes, without increasing the cache’s miss
ratio.

5.1 Sustainable design constraints in flash caching

To limit embodied emissions, sustainable flash caches must minimize (i) idle flash space
— which incurs emissions for no benefit; (i7) DRAM usage for object metadata — which
can add up to tens of GBs [105, 178]; and (4ii) flash write rates — which wear out the
device, reducing lifetime. No prior flash-cache design meets these criteria (Table 5.1). In
particular, although caches must admit new objects to maintain hit rates, flash caches
must be designed to minimize application- and device-level write amplification to extend
device lifetime.

Why not Kangaroo? FairyWREN builds on Kangaroo [178, 179]. Kangaroo’s design
allows for a tradeoff between writes and DRAM overhead. The larger KLog is, the more col-
lisions will be found during flush operations, lowering KSet’s ALWA in exchange for higher
DRAM overhead. Still, Kangaroo needs only 5-10% of flash for KLog to substantially re-
duce KSet’s writes. Since KSet comprises more than 90% of the cache capacity, the DRAM
needed to index KLog is limited. Due to its low DRAM overhead, Kangaroo achieves large
emission reductions over a memory-optimized log-structured cache, Flashield [105], for

64

workloads with many small objects (Fig. 5.9 in Sec. 5.4.3). This comparison shows that a
carbon-efficient cache needs to have a low DRAM overhead.

While Kangaroo greatly reduces writes by limiting ALWA, it still writes too much be-
cause Kangaroo cannot control device-level write amplification. Kangaroo experiences high
DLWA because KSet performs random 4 KB writes, the worst case for DLWA on LBAD
devices. Because of its high write budget requirements, Kangaroo cannot reduce emissions
by moving to denser flash. For example, Fig. 3.1 shows that, for a 10-year lifetime, QLC
tolerates only 0.37 device-writes per day (DWPD) and PLC tolerates only 0.16 DWPD.
Kangaroo performs 1.46 DWPD in our evaluation. Our goal is to build a sustainable cache
that achieves Kangaroo’s low DRAM usage while also writing far less to flash. We find
that flash caches need a different flash interface in order to reduce DLWA without adding
DRAM overhead.

5.2 Write-Read-Erase iNterfaces (WREN)

Prior flash caches incur excessive DIWA. The root causes are the mismatch between write
and erase granularities and a legacy LBAD interface that hides this mismatch from soft-
ware. This section discusses recent Write-Read-Erase iNterfaces (WREN), such as ZNS [66]
and FDP[176], that include Erase as a first-order operation. We show that WREN is nec-
essary but insufficient: a new flash interface does not reduce writes by itself, changes to
the cache design are required.

5.2.1 Today’s interface is LBAD

Most flash SSDs today are logical block addressable devices (LBAD), sharing the same
interface as disks. LBAD presents the flash device as a linear address space of fixed-size
blocks! that can be independently read or written.

LBAD eased the transition from HDDs to SSDs, but does not expose the erase granu-
larity of flash (Sec. 2.2.4). As a result, the LBAD device firmware must perform garbage
collection (GC) that can cause high DLWA and tail latency. Although there has been work
to decrease DLWA [124, 125, 129, 158, 252, 259|, LBAD devices still hide erase units and
GC from applications, preventing co-optimization to minimize overall flash writes.

5.2.2 Challenges of new interface design

While a variety of flash interfaces have been proposed [65, 129, 148, 153, 192, 220, 247, 269],
none have gained widespread adoption. Two proposals, Multi-streamed SSDs and Open-
Channel SSDs, illustrate the pitfalls of designing a new flash interface.

Multi-streamed SSDs [148, 153] allow users to direct writes to different streams. Streams
provide isolation between workloads: different streams write to different EUs. When ob-
jects with similar lifetimes are grouped into the same stream, GC is more efficient. However,
because the application does not control GC directly, DLWA remains a significant issue.

!These fixed-size blocks correspond to pages, not flash blocks

65

Open-Channel SSDs [65] remove all flash-device logic and force applications to handle
all of flash’s complexities. While the hope was to develop layers of abstraction in software
to hide some of this complexity, this software was never widely deployed.

Lesson for flash caches: An ideal flash interface for caching would allow the cache to
control all writes, including GC, but still present a simple abstraction to application de-
velopers.

5.2.3 What makes an interface WREN?

We call interfaces that delegate Erase commands and garbage collection to the host Write-
Read-Erase iNterfaces (WREN). WREN is defined by three main features:

1) WREN operations. WREN devices must let applications control which EU their data
is placed in and when that EU is erased. Specifically, WREN devices must, at least, have
Write, Read, and Erase operations.

These operations can be implemented differently. For example, Zoned Namespaces
(ZNS)[66] and Flexible Data Placement (FDP)[176] are both WREN. Both interfaces are
NVMe standards with strong support from industry and provide an abstraction for writing
to an EU2. However, they have different philosophies, which can be seen, for instance, in
their Write operations. ZNS provides either sequential writes to an EU or nameless writes
through Zone Append [269]. FDP provides random writes within an EU as long as the
application tracks that the number of pages written is less than the EU size. Despite these
differences, both provide the control over data placement into EUs required by WREN.

Moreover, the aforementioned Open-Channel interface is also WREN. But Open-Channel
SSDs expose the full complexity of the device to the host, which is additional complexity
not required to reduce a cache’s DLWA.

2) The Erase requirement. Unlike LBAD, WREN devices do not move live data from
an EU before erasing it. Applications are responsible for implementing GC to track and
move live data before calling Erase. Erase is different from a traditional trim because
Erase targets an entire EU rather than individual pages. Failure to perform correct and
timely GC is subject to implementation-specific error handling by the device. A major
difference between FDP and ZNS is how they treat violations of Erase semantics, but this
error behavior is inessential to reducing DLWA and thus beyond WREN.

3) Multiple, but limited, active EUs. An active EU is one that can be written to
without being erased. WREN devices support a few active EUs at one time. Since an
active EU typically requires a device buffer for the EU’s data, the maximum number of
active EUs is implementation-specific. FairyWREN requires four simultaneously active
EUs, which we expect will be supported in the vast majority of WREN devices.

2This abstraction is called a zone in ZNS and a reclaim unit in FDP.

66

Variable | Definition

Random variable representing number of invalid page in an EU chosen for GC
Number of pages in an EU

Probability that a page is invalid

Number of writes between each GC operation

Total number of EUs

Number of EUs for user data (does not include overprovisioning)

2 =+ W o

Table 5.2: Variables in analytical model of FIFO--.

5.2.4 WREN alone is not a cure for wa

WREN devices make it easy to perform large, sequential writes with no WA. When writing
sequentially, the user can maintain a single active EU and fill the EU completely before
activating the next EU. Furthermore, if all writes are large and sequential, it is generally
easy to find an EU consisting of invalid data when GC is required, resulting in low WA.

However, not all caches can perform large, sequential writes. Set-associative flash caches
also want low WA, but perform small, random writes that incur high DIwWA on LBAD
devices. One might hope that WREN devices can achieve lower WA. A reasonable first
attempt at implementing a set-associative cache on WREN is to treat each set as an object
in a log-structured store, allowing the cache to write updates sequentially to a single active
EU. This naive approach does not reduce WA— it just moves the GC from the device to
the cache (see Sec. 5.4.6).

The impact of smaller EUs. One idea for mitigating WA under small, random writes is
to reduce the EU size, e.g., from a GB to tens of MB, by removing error correction between
flash blocks. Caches can tolerate removing error correction because they are not tasked
with permanently storing the data, rather lost bits just translate to misses. Prior systems
use smaller EUs to minimize GC [52, 182] because, intuitively, lowering the number of
sets per EU creates more EUs that are either mostly invalid (good candidates for GC) or
mostly valid (bad candidates for GC that are skipped). However, other prior work that
mathematically analyzes the WA of FIFO GC policies|[101, 134]| has largely ignored the
effect of EU size. In fact, this modeling work assumes that changing the EU size will not
change the WA from GC. To remedy this discrepancy in prior work, we need to model the
WA of a FIFO GC policy for a set-associative cache and capture the effect of EU size.

Modeling of DLWA Under Random Writes. Our goal is to model the effect of EU size
on DLWA. Specifically, we want to analyze the performance of a FIFO+ GC policy, which
selects EUs for garbage collection in FIFO order and skips EUs which contain only valid
data. The FIFO+ policy sees a random write workload from the set-associative cache since
the inserted key’s hash determines which set to write, a random process assuming a perfect
hash function.

We use an approach similar to that of Jeong and Dubois [134] to model the relationship
between EU size and DLWA under FIFO+. While several prior papers [101, 134, 244| noted
that DLWA can be approximated using W Lambert functions, this prior work focuses on

67

device overprovisioning rather than on the EU size.

We define X to be the random variable representing the number of invalid pages in an
EU that is targeted for garbage collection (as seen in Table 5.2). Because FIFO+ will erase
an EU only if it contains invalid pages, our goal is to approximate E [X|X > 0]. This tells
us the number of new pages that can be written every time GC is performed. Hence, if we
let b be the number of pages in an EU, we can compute the DLWA as

DLWA = b
E

EXIX S0 (5.1)

Our approximation makes two simplifying assumptions.

First, we assume that each of the b pages in the target EU is invalid independently with
probability p. This is reasonable when writes are random and the total number of pages
in the device is large. This assumption implies that X ~ Binomial(b, p). To approximate
the expectation of X, we must approximate p.

Second, we assume that an EU is targeted for GC every k writes, where k is a constant.
Specifically, we define ¢ to be the total number of EUs in the device and assume k = tE [X].
This is a reasonable approximation because k is the expected number of writes that occur
between GC operations on a given EU and the total number of EUs, ¢, is large. A particular
page will be invalid if at least one of the k writes targets the page. Hence, the probability

p that a page is invalid is
k
1
=1—-(1——
)

where v is the number of EUs available to store valid user data. Note that u is typically
smaller than ¢, and ﬁ represents the amount of overprovisioning in the device.
Combining these assumptions yields

E[X]zb.pmz)(l—(l—%)k) (5.2)
~b (1 - (1 - %)ﬂzm) : (5.3)

We can rewrite (5.3) using the W Lambert function to get the following approximation
for E[X]:
Wbt (1— 1) (1-2))

ub ub

B[X] =b- ——

To compute E[X | X > 0], we note that
b _ i) b

. P(X 1 , .
IE[X|X>O]:z:z'P(X>O):P(X>O)X:Z.P(X:Z)

i=1 (1=0

and thus
E [X] E [X]

P(X>0) 1—(1L—p*

E[X|X >0 =

68

Hence, we now have an approximation that allows us to write DLWA as defined in (5.1) in
terms of the device parameters ¢, u, and b.

Results of model. We validate our model against simulation in Figure 5.2, where we run
both our simulation and the model with an overprovisioning of 7%. Our approximation
(Fig. 5.2) matches simulation results, with a R? value of 0.9996.

Our approximation shows that when EU sizes are small, FIFO is more likely to find
EUs that are mostly invalid or completely valid. This leads to a lower WA, as expected in
prior systems, since these EUs require fewer rewrites of valid data. However, as EUs grow,
the WA quickly stabilizes. Thus, the WA does not change for EUs larger than around 256
KB.

8 ——— = — =3
r' == Simulation
6 / Model
<
= 4 /l
214
7/
0

16KB 256KB 4MB 64MB 1GB
Size of EU

Figure 5.2: DIWA for different EU sizes. The DLWA for a set-associative cache running
on WREN with 7% overprovisioning. EUs have to be less than 128 KB to significantly
reduce DLWA.

Lesson for flash caches: We find that reducing EU size only improves WA for very small
EU sizes. To realize a significant reduction in WA, the EU size must be tens of KBs, but
that is unachievable in current devices (Sec. 2.2.4). Hence, we conclude that WREN alone
does not reduce WA for caches. To reduce WA, we must also re-design the cache.

5.3 FairyWREN Overview and Design

FairyWREN uses WREN to substantially reduce WA by unifying cache admission with
garbage collection. The resulting reduction in overall writes lets Fairy WREN use denser
flash while extending device lifetime to improve sustainability.

5.3.1 Overview

How FairyWREN reduces writes. Fairy WREN uses WREN’s control over data place-
ment and garbage collection to reduce writes in two main ways. First, FairyWREN in-
troduces nest packing to combine garbage collection with cache admission and eviction.
When live data is rewritten during GC, FairyWREN has an opportunity to evict unpopular

69

Logical WREN Implementation
s
= Log Log-Structured Cache
[oT3)
o Segment
_;' ‘ Log -
o T Sliced Log-Structured Cache
@)
w aul =
& | | Hot-Cold Sets @ @JI;,":I]
= Sliced Log-Structured Store

Figure 5.3: Overview of FairyWREN architecture.

objects and admit new objects in their place. In LBAD, by contrast, these objects would
have to be rewritten separately for GC and admission/eviction.

Second, FairyWREN groups data with similar lifetimes into the same EU, separating
data that in prior caching systems would have been in the same page. If all of the data
in each EU has roughly the same lifetime, EUs will either consist mostly of live data or
mostly of dead data. FairyWREN can then GC the mostly dead EUs with few additional
writes. FairyWREN leverages two main techniques to enable this grouping: large-small
object separation and hot-cold set partitioning.

Architecture of FairyWREN. FairyWREN partitions its capacity into a large-object
cache (LOC) and a small-object cache (SOC), as seen in Fig. 5.3. Incoming requests first
check the LOC and then check the SOC, since requests do not know the size of the data
that they are requesting.

The large-object cache (Sec. 5.3.2) stores objects larger than 2 KB and uses a simple
log-structured design, since it can tolerate higher per-object DRAM overhead.

The small-object cache (Sec. 5.3.3) uses a hierarchical design based on Kangaroo [178].
The SOC contains two levels: FwLog and FwSets. At a high-level this is similar to
Kangaroo, but FwSets needs to operate differently due to WREN. Since WREN does not
support random writes, the sets are kept in a log-structured store. FwSets store sets,
not individual objects, in the log to minimize DRAM. When this log-structured store is
garbage collected, objects are opportunistically moved from FwLog into FwSets. Finally,
each set in FwSets is further partitioned into hot (frequently accessed, long-lived) objects
and cold (recently admitted, short-lived) objects (Sec. 5.3.4).

5.3.2 The LOC

The LOC is a log-structured cache. Adapting log-structured caches to WREN is straight-
forward, since they only perform large, sequential writes. The LOC is broken into large

70

segments, each the size of an EU. Segments can then be evicted in LRU or FIFO order
with minimal WA. The LOC uses DRAM in two ways: (i) an in-memory, EU-sized buffer
for log insertions, and (i) an in-memory index tracking object locations on flash. Because
the LOC stores large objects, it contains relatively few objects and needs little DRAM.
Besides the segment buffer, all LOC objects are stored on flash.

Insertions. Objects are first inserted into an in-memory segment buffer and added
to the in-memory log index. Once the segment buffer is full, it is written to an empty EU
in the log.

Lookup. Reads look up the object’s key in the log index. If found, the cache reads
the object from the indicated EU.

Eviction. FEventually, the log will fill up and LOC will evict a log segment based on
the eviction policy. Since log segments are aligned to EUs, eviction simply Erases an EU,
evicting those objects from the cache. This design does not rewrite any objects, incurring
minimum WA of 1x.

5.3.3 The SOC

The focus of FairyWREN is the SOC. Log-structured caches are impractical for caching
small objects because a large flash cache can fit billions of small objects, requiring a large
DRAM index to track them all. FairyWREN’s SOC is based on Kangaroo [178]. We
describe FwSets individually, and then how they work together.

FwSets design. FwSets is a set-associative cache that maps each object to a unique set
by hashing its key. When admitting an object, FwSets evicts old objects from the object’s
set then overwrites it. However, overwriting is impossible in WREN, so FwSets stores the
sets themselves as objects in a log-structured store. FwSets uses an in-memory index to
track the location of each set on flash, but, unlike prior work [158, 167, 220], it does not
track individual objects, since this would incur too much DRAM overhead. The index’s
DRAM overhead is low because a set is at least 4 KB, whereas objects can be just 10s of
bytes. (Larger sets reduce the size of FwSets’s DRAM index, but increase average read
latency.)

When FwSets’s log-structured store is close to full, it must garbage collect in order to
admit new objects to the cache. The simplest scheme would be to erase the EU at the tail
of the log, evicting all sets — and thus their objects — mapped to this segment?®. However,
since each set contains a mixture of popular and unpopular objects, throwing away entire
sets would significantly increase miss ratio. Instead, FwSets rewrites live sets during GC
before erasing the EU.

SOC operation. FwLog and FwSets operate as a hierarchy:

3In this scenario, FwSets would be on a log-structured cache.

71

FWLog Flush ‘ Victim Set

Victim Segment ——x——

Garbage Collection IE

. [—]
VicimEU EH EH ~ ES

Free EU

(+) Erase.

Figure 5.4: Nest packing in FairyWREN’s small-object cache.

Lookup. Lookups, like in Kangaroo, first check FwLog for the object. If not found,
FwSets hashes the object’s id and looks up the set’s location. The set is read and scanned
for the object.

Insertion. FairyWREN first inserts objects into FwLog. When FwLog is full, objects
are evicted from FwLog and inserted into FwSets, as described next. Similarly, inserting
into FwSets can cause cascading eviction from FwSets.

Eviction (nest packing). If either FwLog or FwSets is running out of space,
Fairy WREN needs to perform nest packing (Fig. 5.4). FairyWREN’s SOC chooses an EU for
eviction from FwLog or FwSets, depending on which is full. If both logs are full, FwSets
is chosen because FwSets must have space to receive objects evicted from FwLog.

The victim EU is first read into memory. If evicting from FwLog, each object in the
EU hashes to a wvictim set. Otherwise, when evicting from FwSets, each set in the EU
is a victim set. Then, @ FairyWREN rewrites each victim set by: @ finding all objects
in FwLog that map to a given set, forming a new set containing these objects (evicting
objects as necessary), and @ rewriting the set by appending it to FwSets’s log. Finally,
@ FairyWREN erases the victim EU.

SOC design rationale. Prior flash caches relied on LBAD GC to reclaim flash space from
evicted sets, causing DIWA. The key difference of FairyWREN from prior flash caches is
its coordination of cache insertion and eviction with flash GC.

FairyWREN’s nest packing algorithm combines previously distinct processes. LBAD
caches pay for eviction as ALWA and for garbage collection as DLWA. In the worst case,
a set is copied by garbage collection and then is immediately rewritten to admit objects
from FwLog. It is impossible to merge these flash writes in LBAD. Fairy WREN leverages
WREN to eliminate unnecessary writes by aligning the eviction and garbage collection
cadences of FwLog and FwSets.

5.3.4 Optimizing the SOC

The SOC is the main source of DRAM overhead and WA in FairyWREN. We employ a
variety of optimizations to improve the memory and write efficiency of the SOC.

72

CoIdLo

Cold .
Hot Objects
Subset | ¥ Sort 'g
Merge =
Hot - Cold Objects

Subset

Figure 5.5: FwSets architecture. FwSets is split in two: hot subsets with cold objects
and cold subsets with hot objects. Most of the time objects are inserted into the hot subset.
However, every n subset updates, both subsets are read, merged, split by object popularity,
and then both rewritten.

Reducing flash writes by separating hot and cold objects.

Even after using nesting to decrease writes, FwSets is still the primary source of flash writes
in FairyWREN. To further reduce these writes, FwSets separates objects by popularity, as
determined by a modified RRIP algorithm [133, 178]. Instead of a set being one unit that
is written every insertion, each set in FwSets is split in twain, into a subset for popular
objects and a subset for unpopular objects, each backed by its own log-structured store.
Each subset is at least a page. Paradoxically, since the unpopular objects are most likely to
be evicted, the subsets with unpopular objects correspond to hot (i.e., frequently written)
pages on flash. Hence, we refer to the subsets with unpopular objects as hot subsets and
we refer to the subsets with popular objects as cold subsets.

With hot and cold subsets enabled, objects evicted from FwLog are inserted into the
hot subset. The cold subset is not typically written during insertion. Every n nest packing
operations on a subset, both the hot and cold subsets are read. In memory, these subsets
are merged and redivided by object popularity, as seen in Fig. 5.5. Any popular objects
found in the hot subset are moved into the cold subset. Since popular objects are likely to
remain in the cache for a while, they do not need to be rewritten as frequently. Therefore,
they should be in the cold subset and not incur extra rewrites. The least popular objects
found in the cold subset are moved into the hot subset so that FwSets can evict them if
they remain sufficiently unpopular.

Hot-cold object separation can nearly halve FwSets’s write amplification. If n is 5
and sets are 8 KB (two 4 KB subsets), FairyWREN without hot-cold object separation
would have to write all 8 KB on each insertion to a set. With hot-cold object separation,
FairyWREN writes 4 KB for the hot subset on every insertion, but only has to write 4 KB
for cold subset on every fifth insertion. Specifically, Fairy WREN writes 4 KB for the 1st,
2nd, 3rd and 4th new object written to a set, since it only has to update the hot subset
with the new object. New objects have a high likelihood of being unpopular since many
objects are never accessed [60] so starting them in the hot subset aligns well with our
variant on the RRIP eviction policy. On the fifth insertion, Fairy WREN remerges the hot
and cold subsets — rewriting all 8 KB. Thus, FwSets writes only 24 KB instead of 40 KB
every five inserts to a set, a 40% write reduction. Since this write reduction applies to all

73

0 1= p
EU 1
| 11] | 11
DRAM Logical WREN

Figure 5.6: FwLog architecture. FwLog uses slicing to minimize memory overhead
in FwLog.

sets, we see a 40% write reduction for FwSets overall. This translates to a large reduction
in FairyWREN (Sec. 5.4.6).

Theoretically, FairyWREN could further reduce writes by further dividing sets. How-
ever, there are some practical limitations to this, namely that WREN devices only support
a limited number of active EUs, often fewer than 10. Fairy WREN currently needs 4 active
EUs: 1 for LOC, 1 for FwLog, and 2 for FwSets (one for the hot subsets and one for the
cold subsets). Using only 4 active EUs allows FairyWREN to run concurrently with other
programs on the flash without interference and ensures compatibility with a wide range of
WREN devices while still achieving low write rates.

Moreover, separating objects by popularity yields diminishing returns since it increases
miss ratio due to object-popularity mispredictions. To maintain miss ratio, the cache
then requires more capacity — meaning FairyWREN would trade a WA problem, which
may require additional capacity to maintain the required write rate, for a just a capacity
problem. We expect many wrong object-popularity predictions. Fairy WREN maintains
very few bits of metadata to track each object’s popularity to minimize DRAM, leading
to low fidelity predictions. The miss ratio will increase if popular objects are placed in hot
subsets and evicted prematurely. This type of error becomes more frequent as one tries to
separate objects by popularity at finer granularity. In fact, even our single layer of hot-cold
separations causes a modest increase in miss ratio (Sec. 5.4.6).

Minimizing DRAM in FwLog by slicing.

Like Kangaroo [178, 179], FwLog is implemented as 64 slices, i.e., 64 independent log-
structured caches that operate in parallel over subsets of the keyspace. This is done to
save log, 64 = 6 bits per flash pointer in the DRAM index.

A naive implementation of slicing on WREN would require one active EU for each slice.
Many WREN devices do not permit 64 simultaneously active EUs due to the prohibitively
large DRAM overhead this would impose on the flash device. Instead, FwLog uses a
single active EU and shares segments among all 64 slices, giving each slice an equal static
share of each segment (Fig. 5.6). The downside of sharing FwLog segments is that one
slice could fill up its share of the segment before the others. In the worst case, one slice
fills before the others contain any objects, causing internal fragmentation in FwLog. This
fragmentation reduces FwLog’s ability to minimize WA in FwSets. Via simulation, we
found that fragmentation could exceed 20%.

74

Balls and bins approximation of slicing. To better understand how much fragmenta-
tion slicing creates, we model the process of filling a sliced buffer using a balls and bins
approximation. Since FwLog hashes each object to a slice, we can model each object as a
ball randomly being assigned to a bin representing one slice. To simplify the analysis, we
assume each object is the same size.

We want to know how many balls, in expectation, we can throw before the maximum
number of balls in any bin is greater than the number of objects that can fit in a slice
(). To answer this question, we consider the stochastic process of sequentially throwing

m
balls into n bins. It is easy to see that the average number of balls in a given bin is (—)7
n

suggesting that fragmentation should be limited. However, based on our simulation, we
know that fragmentation occurs. Thus, we need to bound the deviation of the maximum
number of balls in any bin from this mean.

To derive bounds on fragmentation, we define the stochastic process {X,,} to be the
maximum number of balls in any bin after m balls have been thrown. We define the
random variable M to be

M = min{m | X, > z}.

Our goal is to bound E[M]. Fortunately, the results of Raab and Steger [200] give a
high-probability bound on X,, which we can use to bound E [M].

Specifically, Raab and Steger show that P{X > k,} = o(1) if @ > 1 and P{X > k,} =
1—0(1)if 0 > a > 1, when

(nlogn
log n log log i gg;n
nlogn nlogn) 8 m§m<<nlogn
log log
logm logm
ko, = (d. — 1+ a)logn, if m = ¢-nlogn for some constant ¢

m +« P logn, if nlogn < m < n polylog(n)
n V' n

2m1 1 logl
@+\/w(1__w), £ m > n(logn)

n n a 2logn

\

where polylog(z) is the class of functions UZ.21 O (logi x) and d. denotes a suitable constant
depending only on c.

In our setup, we only care about the case where m > n(logn)?® since, for 64 slices,
n(logn)® = 377 and m = 10,000 at least.
To bound E [M], we note that P{X,, >z} =1 —o(1) if m > k;. This gives

E[M]=E[M| Xy, >a]-P{Xy, >a} +E[M | X}, <] P{X;, <z} (5.4)
>k - P{X >k} +0 (5.5
> ky - (1 —o(1)). (5.6)

1)

—e— Single Buffer Sim
Model
—o— Double Buffer Sim

20+

101
1 4 16 64 256 1024
Size of buffer (MB)

Fragmentation (%)

Figure 5.7: FwLog space overhead comparison. Comparison of splice model to
single and double buffer simulations over a range of buffer sizes with 64 slices (R? = .97
between single buffer simulation and model).

Hence, taking limits as n becomes large gives

lim E[M] > k (5.7)

n—o0

B v/n2(2logn — loglogn)(2logn — loglogn + 4x) _ nloglogn
2 2

+ nx + nlogn.
(5.8)

While Eq. 5.8 is an asymptotic lower bound, we find that it closely matches our simu-
lation results, as seen in Fig. 5.7. Our simulation consists of 100 trials of the balls and bins
problem at each buffer size. We plot the average of these 100 trials. We find that, unless
the buffer is at least 1 GB, more than 1% of buffered capacity is wasted by our simple
buffering policy. Therefore, we need to find another way to decrease our fragmentation
without increasing our memory usage.

Leveraging double buffering to decrease fragmentation. FwLog reduces fragmen-
tation via double buffering (Fig. 5.8). On insertion, FwLog @ attempts to insert an object
into its slice in the “primary” segment buffer. If the primary is full, @ the object is inserted
into its slice in the secondary, “overflow” segment buffer. @ When any slice in the overflow
buffer becomes more than half full, FwLog writes the primary buffer to flash. The overflow
buffer then becomes the new primary buffer and vice versa. Double buffering increases the
number of objects seen before a buffer is written, reducing the variance in the number of
objects in each slice.

Using both simulation and modeling, we find that this optimization limits the capacity
loss from fragmentation to <1%, even for small (16 MB) buffers (Fig. 5.7). At 16 MB, the
double buffer solution has less fragmentation than 1 GB with a single buffer.

Minimizing DRAM in FwSets by slicing.

Like FwLog, FwSets also slices the log-structured store to reduce DRAM overhead, sharing
segments to minimize active EUs and segment buffers. However, since sets are much larger
than individual objects, the capacity of each bin in our fragmentation model is smaller.

76

Slices
FwlLog
EU 1

0 1 P
'@E-? Nenn|(€ ‘9/
[— B]

DRAM Logical WREN

Figure 5.8: FwLog with slicing. FwLog uses overflow buffers to ensure the log
segments are full when slicing.

This means that FwSets would incur more internal fragmentation than FwLog if using
the same buffer size and number of slices. FwSets therefore uses only 8 slices, which keeps
fragmentation to less than 1% just like slicing in FwLog.

Reducing DRAM in FwSets by using larger sets.

Finally, FwSets further reduces DRAM by using sets larger than 4 KB, reducing the num-
ber of sets that need to be tracked proportionally. Naively, one might expect that increasing
set size would increase flash writes. In a pure set-associative cache, this would be true.
However, FwLog buffers objects, and the number of objects that hash to a set also in-
creases proportionally with set size, so FwSets’s writes are roughly independent of set size.
We see only a 5% increase in WA when going from 8 KB to 16 KB sets with a 4 KB hot
subset and a 12 KB cold subset.

DRAM overhead breakdown. Compared to a LBAD set-associative cache, FwSets
requires additional DRAM to track sets. Hot-cold object separation compounds this effect,
doubling the number of (sub)sets to track.

Component Kangaroo Naive SOC FairyWREN SOC

Log total 48 bits/obj 48 bits/obj 48 bits/obj
Set index - ~ 3.1b ~ 1.4b
Sets (other) 4b 4b 4b

Sets total 4 bits/obj 7.1 bits/obj 5.4 bits/obj
Log metadata ~ 0.8b ~ 0.8b ~ 0.8b
Log size 5% = 2.4b 5% = 2.4b 5% = 2.4b
Set size 95% = 3.8b 95% = 6.7b 95% = 5.1b
Total 7.0 bits/obj 9.9 bits/obj 8.3 bits/obj

Table 5.3: FairyWREN memory overhead. Kangaroo and FairyWREN’s SOC’s
DRAM overhead for a 2TB small-object cache with a 5% log. Despite tracking sets,
FairyWREN’s SOC still needs fewer than 10 bits per object.

Table 5.3 shows the per-object DRAM overhead for Kangaroo and FairyWREN’s SOC.

Due to partitioning and double buffering, FairyWREN achieves the same log overhead as
Kangaroo. FairyWREN’s added overhead shows up in FwSets. Naively, when FairyWREN

7

Parameter Fairy WREN Kangaroo

Interface WREN (ZNS) LBAD
Flash capacity 400 GB 400 GB
Usable flash capacity 383 GB 376 GB
LOC size 10% of flash 10% of flash
SOC log size 5% of SOC 5% of SOC
SOC set size | 4KB hot, 4 KB cold 4KB
Hot-set write frequency | every 5 cold set writes
Set over-provisioning 5%

Table 5.4: Experimental parameters. FairyWREN and Kangaroo experiment param-
eters. Both systems use the same amount of flash capacity, but Fairy WREN is not required
to have 7% over-provisioning for LBAD.

has 4 KB subsets and 200 B objects, each set would need 8 bytes, for 3.1 bits/obj. However,
since FairyWREN uses 8 KB subsets and slices FwSets in eighths, FwSets needs just 1.4
bits/obj to track sets.

FairyWREN uses 19% more DRAM than Kangaroo, a 1.5 GB DRAM overhead increase
for a 2 TB cache. However, FairyWREN’s DRAM overhead is still much lower than a log-
structured cache, and this modest DRAM increase allows FairyWREN to greatly decrease
flash writes (by 12.5x), netting large savings in carbon emissions and cost.

5.4 Evaluation

We compare FairyWREN to prior flash caches and find that: (1) FairyWREN reduces
flash writes by 92% over the research state-of-the-art Kangaroo, leading to a 33% carbon
reduction and a 35% cost reduction, (2) FairyWREN is within 11% of the minimum write
rate, and (3) FairyWREN is the first cache design to benefit from QLC.

5.4.1 Experimental setup

Implementation. We implement FairyWREN in C++ as a module in CacheLib [60]. All
experiments were run on two 16-core Intel Xeon CPU E5-2698 servers running Ubuntu
18.04 with 64 GB of DRAM, using Linux kernel 5.15. For WREN experiments, we use a
Western Digital Ultrastar DC ZNS540 1 TB ZNS SSD, using the LOC and ZNS library
written by Western Digital [140]. The ZNS SSD has a zone (EU) capacity of 1077 MiB.
The devices support 3.5 device writes per day for an expected 5-year lifetime.

We compare to Kangaroo [178] over the first ~2.5 days of a production trace from Meta.
FairyWREN uses a ZNS SSD and Kangaroo uses an equivalent LBAD SSD with similar
parameters (Table 5.4). Both caches use 400 GB of flash capacity and achieve similar
miss ratios as Kangaroo’s production experiments [178]. We overprovision FwSets by 5%
to ensure forward progress during nest packing, giving several free EUs to the FwSets
log-structured store. Thus, FairyWREN effectively uses 383 GB. This idle capacity should

78

SLC MLC TLC QLC PLC

Write endurance 4.4 x 4x 1x 0.32x 0.16x
Capacity discount 3x 1.5x% 1x 0.75x 0.6x

Table 5.5: Flash density scaling factors. Scaling factors for different flash densities.
We optimistically assume that increasing the bits per cell does not affect emissions or cost.

decrease in larger flash devices. Kangaroo only uses 376 GB of capacity due to device-level
overprovisioning. We approximate Kangaroo’s DLWA based on results in Ch. 4.

Simulation. In addition to flash experiments, we implemented a simulator to compare
a much wider range of possible configurations for FairyWREN. The simulator replays a
scaled-down trace to measure writes and misses from each level of the cache, including the
LOC, FwLog, and FwSets.

We evaluate our cache in simulation on a 21-day trace from Meta [60] and a 7-day
trace from Twitter [262]. The Meta trace accesses 6 TB of unique bytes with a 13.8%
compulsory miss ratio and an average object size of 395 bytes. Small objects (<2 KB) are
95.2% of requests, and these requests account for 60.2% of bytes requested. The Twitter
trace accesses 3.5 TB of unique bytes, has a 17.2% compulsory miss ratio, and an average
object size of 265 bytes. Small objects are >99% of requests, and these requests account
for >99% of bytes requested. Both of these traces are higher fidelity than the open-source
traces [60, 262]. We present results for the last 2 days of the trace.

5.4.2 Carbon emissions and cost model

We want to evaluate carbon emissions and cost across different caching system. Our model
allows different cache configuration, flash densities, and device lifetime. Since we want to
compare caching systems, our model assumes that a flash device will have the same caching
workload for its entire lifetime and that all flash is purchased at the start of the estimated
lifetime.

Our model needs to estimate how much flash each cache needs to account for both
the cache’s capacity and its writes over the desired lifetime. If the cache capacity cannot
accommodate the write rate, we need to overprovision the flash for the write rate. Thus,

Write Rate * Desired Lifetime>

Flash Capacity = max (Cache Capacity, Write End
rite Endurance

For example, a 2 TB cache with a 6-year lifetime will require at least 2 TBs of flash, but
it may require 2.5 TB of flash to accommodate the cache’s write rate over 6 years. LBAD
devices use 7% overprovisioning, the standard on datacenter drives [22].

We combine this flash capacity requirement with the cache’s DRAM configuration and
CPU to estimate both the cost and the carbon emissions, assuming that flash’s write
endurance is the server’s main lifetime constraint. While we believe this constraint is
reasonable for shorter lifetimes, other failures will become more common at longer lifetimes
(particularly above 10 years). We base our write endurance on Micron 7300 NVMe U.2 TLC

79

SSDs. For other densities, we multiply the TLC write endurance by the write-endurance
factors in Table 5.5, based on [23]. We optimistically assume that different flash densities
will have the same cost and emissions per cell; e.g., 1 TB of PLC has the same emissions
as 600 GB of TLC (5:3 ratio). Our model can incorporate more data on denser flash if it
becomes available.

For cost, we account for both the power and acquisition cost of the flash, DRAM, and
CPU. For the flash acquisition cost, we interpolate linearly between the Micron SSD’s flash
capacities to find a cost for any flash capacity. Cost is normalized to Kangaroo with a 30%
miss ratio for the Twitter trace and 20% for Meta.

To determine carbon emissions, we use the ACT model [123] to estimate operational
and embodied emissions from CPUs, DDR4 DRAM, and flash.

Carbon Emissions = Operational Emissions + Embodied Emissions

device

= Z (Energydevice x Carbon Intensity -+
CPU, DRAM, Flash

(Embodied Emissions)gevice
Desired Lifetime

For the energy’s carbon intensity, we assume the grid is a 50/50 mix of wind and solar,
a common renewable-energy mix [39]. The embodied emissions of both DRAM and flash
depend on their capacity and we assume that the CPU uses 70% of its maximum power
on average.

5.4.3 Carbon emissions of flash caches

We first examine the carbon emissions of different flash caches for a 6-year deployment.
Fig. 5.9 compares FairyWREN to three systems: Minimum Writes, Kangaroo, and a
Flashield-like log-structured cache [105]. Minimum Writes is an unachievable, idealized
cache with WA of 1x and no DRAM overhead. Flashield also assumes a WA of 1x, but
requires a DRAM:SSD capacity ratio of 1:10, as originally proposed. Since we cannot faith-
fully replicate Flashield’s ML eviction policy (and no working implementation is available),
we assume that Flashield achieves FairyWREN’s miss ratios.

Takeaway 0: Sustainable flash caches must use much less DRAM than log-structured cache
designs.

Although we optimistically assumed that Flashield incurs no write amplification, Flashield’s
overall carbon emissions are 1.7x higher than Kangaroo’s. These emissions are due to its
high DRAM overhead. Despite optimizations in Flashield designed to save DRAM, high
DRAM overhead is unfortunately inherent in the design of a log-structured cache. and
thus we need to look beyond log-structured designs.

Kangaroo reduces DRAM overhead through its hierarchical design. Unfortunately,
Kangaroo also incurs a far higher write rate than a log-structured cache. Kangaroo ac-
counts for its increased writes by overprovisioning flash capacity, increasing the write rate
it can maintain in exchange for additional embodied emissions. While Kangaroo is far
more sustainable than Flashield, it leaves room for improvement compared to minimum
writes due to its overprovisioning needs.

80

\ 7 CPU

womm p =W

N 7

¢ ZZ%’llllllllllllllllll
5

AN

10 15 20 25 30 35
Emissions (kg CO, / year)

Figure 5.9: Caches’ carbon emissions breakdown. Yearly carbon emissions for 4
caching systems: minimum writes () with a write amplification of 1 with no additional
DRAM, FairyWREN (%), Kangaroo (*), and a Flashield-like log-structured cache (§).
Our results include the embodied and operational (hatched) emissions from CPU, DRAM,
and flash.

FairyWREN maintains Kangaroo’s low memory overhead while greatly reducing the
flash write rate, lowering its overprovisioning requirements. Consequently, FairyWREN
reduces overall carbon emissions by 21.2% compared to Kangaroo. As this improvement
comes from reducing flash emissions, we focus on flash emissions for the remainder of the
evaluation.

5.4.4 On-flash experiments

To study how FairyWREN reduces flash writes, we evaluate FairyWREN on real flash drives
using the setup in Sec. 5.4.1.

Takeaway 1: FairyWREN greatly reduces flash writes while maintaining a slightly better
miss ratio than Kangaroo.

0 1.00

o 100

= 20.751

[} — FairyWREN g 0.50 \MMWM

T l 501

z 30 Kangaroo 4 —— FairyWREN ?{

3 = 0.251

b= —— Kangaroo &

= 9 , : , , : 0.00 ! ! | | |
0.0 05 1.0 15 200 25 0.0 05 1.0 15 200 25

Days Days
(a) Write rate (Mean: FairyWREN ~7.8MB/s, (b) Miss ratio (Mean: FairyWREN & 0.575,
Kangaroo ~97 MB/s) Kangaroo ~ 0.594)

Figure 5.12: Kangaroo vs FairyWREN. The miss ratio and write rate for Kangaroo
and FairyWREN.

Fig. 5.12 plots the flash write rate and miss ratio over time for Kangaroo and FairyWREN.
The figure shows small write rate spikes in FairyWREN. This is because Fairy WREN per-

81

forms nest packing at the granularity of an EU, ~1 GB. Kangaroo’s write rate appears
smooth as it flushes more frequently, at 256 KB granularity.

The main goal of FairyWREN is to reduce writes, enabling the use of denser flash.
In Fig. 5.12a, FairyWREN reduces writes by 12.5x over Kangaroo, from 97 MB/s to 7.8
MB/s. To achieve this, FairyWREN leverages WREN to combine cache logic and GC and
to separate writes of different lifetimes.

However, reducing writes must not increase misses. Fig. 5.12b shows that, in fact,
FairyWREN and Kangaroo have nearly identical miss ratios: on average, 0.575 for FairyWREN
vs 0.594 for Kangaroo. FairyWREN’s small advantage comes from reducing idle capacity
due to overprovisioning.

We see similar results for write amplification: a 12.2x reduction, from 23 x in Kangaroo
to 1.89x in FairyWREN. The slight difference between the write rate and WA comes from
FairyWREN’s slightly better miss ratio.

Takeaway 2: FairyWREN outperforms Kangaroo for both throughput and read latency at
peak load.

While the primary performance metric for caches is miss ratio, FairyWREN must provide
enough throughput that it does not require more servers — and thus more carbon emissions
— to handle the same load. In our experiments, FairyWREN’s throughput is 104 KOps/s
whereas Kangaroo’s is 40.5 KOps/s. FairyWREN’s significant throughput increase is mostly
due to lower write rate, but also due to better engineering that moved work off the critical
path for lookups and inserts.

Similarly, we find that FairyWREN’s and Kangaroo’s 99*"-percentile latencies are 170
ps and 1,370 ps, respectively. But note that, in practice, the overall tail latency is set by
the backing store, not the flash cache.

5.4.5 FairyWREN reduces carbon emissions

We now evaluate flash carbon emissions and cost via simulation, comparing Fairy WREN (
¥, Kangaroo (*), Minimum Writes (), and Physical Separation (9). Physical Sep-
aration represents Kangaroo on WREN, where each cache component (e.g., LOC, KLog,
KSet) is placed in its own EU to separate traffic and thereby allow LOC and KLog to have
WA of 1x.

Takeaway 3: FairyWREN’s reduced writes translate into reduced carbon emissions and
reduced cost across miss ratios.

Fig. 5.13 plots emissions and cost for a 6-year lifetime vs. miss ratio over a wide range
of cache configurations. Each point is labeled with the flash density used (e.g., T for TLC).

For the Twitter traces (Fig. 5.13a, Fig. 5.13b), Kangaroo is limited to either MLC or
TLC due to its high write rate, and likewise for Physical Separation because it does not
reduce writes by much (Sec. 5.4.6). Meanwhile, FairyWREN leverages its low WA to use
mostly QLC across miss ratios, giving it large carbon and cost reductions vs. Kangaroo.
However, FairyWREN still has too many writes to use PLC. While the gap between Mini-
mum Writes and FairyWREN grows at low miss ratios, there is only a 10.1% difference in
their emissions at 20% miss ratio and a 7.7% difference in cost.

82

* FairyWREN ?‘g(+ Kangaroo ?’ + Minimum Writes Physical Separation Qﬁ]
20
s |
3 . 1.50 20 1.50
215 ' o ¥ = E, I
) Q‘Q T‘.".,, 1251 g Q 81251 B,
210{P. T . © Q T 315 ..~ OQ © Rr QD
2 "'PP’Q ~ g 3 1.00 ‘QT ’:'.‘5, S -~ Q%R0 3 1.001 o an
s FR%Q. 1o Sors{P.. Tq W 2101 PPpePer So7s{ RPplfn
K RS TS WIS "ol I ¥ < SR WA+
£ 0.501 e 5 p. - £ 0.501 Tl
i , g P.._PFQ; % s P - E -
20 30 40 50257 £ 50251
Miss Ratio (%) 0.00 | | | 0 | | 0.00 | |
’ 20 30 40 10 20 30 10 20 30

Miss Ratio (%) Miss Ratio (%) Miss Ratio (%)

(a) Twitter Emis-

sions (b) Twitter Cost (c¢) Meta Emissions (d) Meta Cost

Figure 5.13: Cost and emissions for different miss ratios. The emissions and cost
over six years for Kangaroo (*), FairyWREN (%), Min. Writes (), and Physical Sep. (

@)

The Meta traces (Fig. 5.13c, Fig. 5.13d) are less write-intensive. However, even here
we see that FairyWREN reduces cache emissions and cost compared to both Kangaroo and
Physical Separation. In this case, FairyWREN is able to lower the write rate sufficiently to
use QLC and PLC. As a result, FairyWREN performs close to Minimum Writes, even at
low miss ratios.

Takeaway 4: FairyWREN benefits from using denser flash when Kangaroo cannot.

20 20
nwe] s _
o8 ggn
3210, 3210
58 s 58 s
0- 0-
K FW M K FW M
(a) Twitter (b) Meta

Figure 5.14: Emissions for different flash densities. The carbon emissions to achieve
a 30% miss ratio on Twitter trace or 20% miss ratio on Meta trace on different flash densities
for a desired lifetime of 6 years. Each bar for each cache represents a different density from

SLC (left, darkest) to PLC (right, lightest).

Flash devices are becoming denser over time (Sec. 5.1). Fig. 5.14 shows the carbon-
optimal cache configurations over a 6-year lifetime at a target miss ratio of 30% for Twitter
and 20% for Meta, varying flash density from SLC (left) to PLC (right). Kangaroo performs
best when using TLC on the Twitter trace and QLC on the Meta trace. Using PLC
increases Kangaroo’s emissions due to the excessive overprovisioning needed to compensate
for PLC’s lower write endurance. FairyWREN’s lower write rate enables it to use QLC for
Twitter and PLC for Meta, reducing emissions and cost. Since Twitter’s trace is more
write-intensive, using PLC increases carbon emissions by 24% due to overprovisioning.

83

For Minimum Writes on Twitter, emissions decrease by 17% going from TLC to QLC
and by 8% from QLC to PLC. On Meta, emissions reduce by 18% and 15%. While these
numbers show that denser flash reduces emissions, they suggest diminishing returns even
for an optimal cache.

Takeaway 5: FuiryWREN’s low WA allows it to avoid massive overprovisioning on dense
flash as lifetime is increased.

I Kangaroo 3 BN FairyWREN 2/ B Minimum Writes ‘

20

N
o

Emissions
=
=
o

(kg CO; / year)
Emissions
(kg CO; / year)

o

0
2

6 8 10 12 14 16 8 10 12 14 16
Lifetime (year) Lifetime (year)

(a) Twitter (b) Meta

2

Figure 5.15: Emissions for different lifetimes. The carbon emissions to achieve a
30% miss ratio on Twitter trace or 20% miss ratio on Meta trace with different lifetimes
on QLC flash. The darker part of each bar represents emissions due to overprovisioning.

To explore the trend of increasing device lifetime (Sec. 5.1), Fig. 5.15 considers the
emissions for caches on QLC devices, showing emissions from overprovisioning in a darker
shade.

For a 6-year lifetime, Kangaroo requires 2.2x the emissions of FairyWREN on Twitter
and 1.17x on Meta. At 12 years, the gap increases to 2.6x and 1.54x. Due to the
DIWA in LBAD devices, Kangaroo’s emissions are lowest when it has some amount of
overprovisioning. FairyWREN does not need this overprovisioning due to its lower WA.
This lower overprovisioning leads to Fairy WREN’s much lower emissions, particularly for
the Twitter trace.

Takeaway 6: Increasing flash density does not necessarily improve sustainability, as life-
time matters more than density.

To minimize emissions, we need to optimize both lifetime and flash density. Fig. 5.16
shows each system’s emissions for all lifetimes, with the best density displayed on each
bar. Kangaroo usually prefers MLC and TLC because, to provide enough write endurance.
QLC and PLC require too much overprovisioning and thus Kangaroo would have higher
emissions if using them. FairyWREN has fewer emissions than Kangaroo at all lifetimes
and stays within 30% of Minimum Writes.

The best flash density decreases for longer lifetimes. FairyWREN prefers PLC on Twit-
ter for a 3 year desired lifetime, but TLC for 9 years. At these long lifetimes, the reduced
write endurance of denser flash outweighs its sustainability benefits, and extending lifetime
is more important than using denser flash. Although a minimum write cache can use PLC
for up to 15 years, even a slightly higher write rate quickly overcomes PLC’s limited write
endurance.

84

I Kangaroo B\ BN FairyWREN g B Minimum Writes

N
o

N
o

Emissions
(kg CO; / year)
=
o
Emissions
(kg CO; / year)
=
o

TP P[TQP[TQP[TQP|TQPIMQP|MT PMT PMT P[MT PMT PjMT PM T P)
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

o

Lifetime (year)

(a) Twitter

Lifetime (year)

(b) Meta

Figure 5.16: Emissions for different lifetimes and densities. The lowest carbon
emissions to achieve a 30% miss ratio on Twitter trace or 20% miss ratio on Meta trace while
varying both desired lifetimes and flash density. The darker part of each bar represents
emissions due to overprovisioning. Letters on each bar represent the flash density

Takeaway 7: For a given flash device, FairyWREN extends lifetime by at least a couple of
years.

15 1y 15

n kig & e (]

© . © .

L 10; X EmEha) g10 -4 s

o 4 o)

e |) ¢ |y

) L)) - b

2 : < Do

- 0 T ‘ T T - 0 Il I
20 30 40 10 20 30

Miss Ratio (%)
(a) Twitter

Miss Ratio (%)
(b) Meta

Figure 5.17: Lifetimes vs miss ratios. The lifetimes for a 3.6 TB cache for Kangaroo
(%), FairyWREN (¥), and Physical Separation ().

So far, we have evaluated emissions when deploying the optimal drive for a given lifetime
and flash density. However, flash deployments are often constrained to specific devices
with a pre-determined capacity and density. In these situations, extending lifetime can
still reduce emissions. Fig. 5.17 evaluates device lifetime for a 3.6 TB drive at different
miss ratios. Compared to Kangaroo, FairyWREN is able to extend the device’s lifetime by
at least 2 years and by over 5 years on the Meta trace. By contrast, Physical Separation
barely improves lifetime vs. Kangaroo. While Physical Separation reduces writes some
over Kangaroo, both ultimately need to massively overprovision to extend lifetime — thus,
increasing their miss ratio for any lifetime.

5.4.6 Where are benefits coming from?

We next explore how FairyWREN’s optimizations contribute to its write rate reduction.
Fig. 5.18 shows the write rate on the Twitter trace starting with Kangaroo on LBAD (Log
+ Sets). We then add the optimizations of FairyWREN incrementally. First, we port
Kangaroo naively to WREN (+WREN), then we physically separate the large and small

85

objects into different erase units (+Physical Sep.). Then we add nest packing (+Nest
Packing), and, finally, hot-cold object separation (+Hot-Cold) to realize Fairy WREN. We
first present the write rates for the different systems across different capacities and miss
ratios, showing the emissions-optimal flash density for one capacity. We then show how
the lifetimes of each design would vary if deployed on a QLC drive.

5
.. Log + sets - 10° 1 pac—ee=a==fif-M==="""="" I
(=Kangaroo) m =4
-+ + WREN = £ I
+ Physical Sep. % 102 e | e £ 31
-=-- + Nest Packing < B @
.. *HotCold g el = 2
=FW T ———.— &
(= FW) " e g | ‘
25 30 35 40 45 o .

Miss Ratio

Figure 5.18: FairyWREN benefit attribution. Write rate (log-scale) and lifetime
breakdown on the Twitter trace, incrementally adding optimizations to go from Kangaroo
to Fairy WREN.

Takeaway 8: Caches on optimal LBAD devices cannot achieve the same write rate as
FairyWREN.

Three of the lines in Fig. 5.18 are achievable with LBAD devices: Log + Sets, + WREN,
and +Physical Sep (though +Physical Sep assumes an augmentation to LBAD such as
streams). Log -+ Sets represents the current Kangaroo implementation on LBAD. + WREN
is a naive port of Kangaroo to WREN devices that redirects all cache writes to a single
log-structured store using FIFO garbage collection. This naive port does not attempt
any separation of objects by expected lifetime, and we assume it has the same ALWA as
Kangaroo. +WREN has a simplistic FIFO garbage collection policy, meaning that it can
be worse than just running on LBAD which often do try to separate objects belonging to
different streams. This means +WREN has higher write rates than Kangaroo on LBAD. In
practice, even the best LBAD implementation must perform somewhere between + WREN
and +Physical Sep, which would require LBAD to perfectly predict different streams of
data. But even in this best case of Physical Sep., the cache still incurs far too many writes,
limiting the lifetime of a QLC device to less than half a year.

Takeaway 9: Both nest packing and hot-cold object separation are essential to FairyWREN’s
write reduction.

The other two systems we compare in this breakdown are +Nest packing and +Hot-
Cold (i.e., FairyWREN with all optimizations). Nest packing reduces writes by at least
3.7x and hot-cold object separation reduces writes by another 3.4x. Either of these
optimizations alone would not achieve a close to 5 year lifetime, meaning that the cache
still has too many writes to achieve a reasonable deployment lifetime today on QLC. With
both optimizations, FairyWREN achieves up to a 33x increase in QLC lifetime over the
Kangaroo baseline and a 13x increase over +Physical Sep. We also observe that, even

86

though hot-cold separation can increase miss ratios, the reduction in write rate and its
accompanying reduction in overprovisioning outweighs this miss ratio increase.

5.4.7 Operating on a fixed flash device

We now compare Kangaroo and Fairy WREN with respect to miss ratio given a fixed flash
capacity. We enforce the same constraints of a 6-year flash lifetime, TLC flash density,
and 32 GB of DRAM for both systems. Unlike prior figures where we minimize emissions,
FairyWREN cannot not gain an advantage for using denser flash, and Kangaroo cannot in-
crease write endurance by using less-dense flash. We show that Fairy WREN under the same
capacity constraints, and thus write rate constraints, improves miss ratio over Kangaroo
through its reduction in writes allowing it to more effectively use the capacity.

mmm Kangaroo g BN FairyWREN g/]

45 ; 100 = 20
3 X
401 % % 801 5
~ < %) x'x = 151
8} <~ 351 % = K O
B o ~ 60 1 g‘ =
: = \ % 0]
S S 30 x % & X 210 >
-4 ; €
3 " x % = 404 X < A
B~ £ 251 % 2 X o R
= z x 2 54 X }x
204 CHE = 20 x S x__X
Ty X ' x¥
15 T T 0 T T 0+ T :
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
Flash Device Capacity (GB) Flash Device Capacity (GB) Flash Device Capacity (GB)
35 T 100 - 20
xx — x c
—~ 301 X n 801 2151
S %" g 5
~ X - = x 9 |:
0o 251 %(x ~ 60 2 =
3 o XX 2 £ %
S o 20 e 40 g
O Rl X 8 [0} x*
= g £ £ 51 20
2 154 % = 201 § x)x“
10 : : 0 : : 0 : :
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

Flash Device Capacity (GB) Flash Device Capacity (GB)

(b) Write Rate

Flash Device Capacity (GB)

(a) Capacity (c) WA

Figure 5.19: Miss ratio vs write rate vs write amplification. Pareto curve of
cache miss ratio at different flash device sizes and the corresponding write rate and write
amplification of these points. The DRAM capacity is limited to 32 GB, the desired lifetime
is 6 years, and the caches use TLC flash.

Takeaway 10: FairyWREN achiecves the same miss ratio at lower flash capacities than
Kangaroo.

Fig. 5.19 shows the effects of changing the flash capacity on miss ratio for both traces.
For each flash capacity, we also plot the write rate and WA of both systems. We find
that FairyWREN needs less flash capacity than Kangaroo to achieve a given miss ratio.
FairyWREN also requires less overprovisioning due to its lower write rate. This trend is

87

B Kangaroo ‘g s FairyWREN .‘2(’

3401 & 301
o e X
T 30 T VIR VAR SV I
2 3077X o e £ 20— R
o P SR LD 0
= 20 =
10 ,
0 32 64 0 32 64
DRAM (GB) DRAM (GB)
(a) Twitter (b) Meta

Figure 5.20: DRAM capacity vs miss ratio. Pareto curve of cache miss ratio at
different DRAM sizes. The flash capacity is limited to 3.6TB, the desired lifetime is 6
years, and the caches use TLC flash.

more prominent in the Twitter trace than the Meta trace, which is less write-intensive.
For the Twitter trace, the limitation of only using TLC prevents Kangaroo from achiev-
ing better miss ratios since Kangaroo’s needs much more overprovisioning, increasing the
overall flash capacity needed to survive 6 years above 3.6 TB. Thus, Kangaroo’s miss ratio
curve shifts to the right.

We also see that flash capacity sets the write budget for the flash device, defining the
write rate that the caching system can tolerate for a desired lifetime. As the capacity
increases, both FairyWREN and Kangaroo can maintain a higher write rate and both sys-
tems use that write rate to further reduce misses. One might expect a similar relationship
for write amplification. However, the systems have different miss ratios, causing Kangaroo
to need to have a lower WA through massive overprovisioning.

Takeaway 11: FairyWREN maintains its advantage under a DRAM constraint.

We investigated how DRAM restrictions affect Kangaroo and Fairy WREN when both
caches use 3.6 TB of TLC flash for a 6-year lifetime, Fig. 5.20. Despite having a large
DRAM footprint, FairyWREN maintains a constant miss ratio advantage over Kangaroo
from 16 GB to 64 GB of DRAM for both traces. FairyWREN still has a low enough overhead
to need less than 16 GB of DRAM for a full 3.6 TB on-flash cache. Therefore, similarly
to less DRAM-constrained environments, FairyWREN’s lower write rate translates directly
into using more cache capacity and a lower miss ratio.

FairyWREN’s miss ratio only begins to increase when DRAM falls to 8 GB on the both
traces. On the Twitter workload, Kangaroo cannot handle the workload with only 8 GB
of DRAM. As seen in the Fig. 5.19, with too small of a cache, Kangaroo actually needs
more overprovisioning to handle the extra writes from the higher miss ratio. With the
DRAM overhead too high to enable a larger cache, Kangaroo cannot be configured to run
with 8 GB of memory and only 3.6 TB of flash capacity. Even for the Meta workload with
its lower write rate, we see that FairyWREN performs slightly better than Kangaroo at
8 GB of DRAM. FairyWREN’s slightly higher DRAM overhead means its cache capacity is
more constrained than Kangaroo’s, but its lower overprovisioning results in a slightly lower
miss ratio. Hence, FairyWREN always outperforms Kangaroo even under severe memory

88

constraints.

5.5 Related Work

This section discusses additional related work with similar techniques and goals to Fairy WREN.

Hot-cold objects and deathtime. In caching, hot objects are the most popular objects.
Caches use eviction policies to retain popular objects [58, 133, 137, 237]. FairyWREN
adapts Kangaroo’s RRIP-based eviction policy [133, 178].

Popularity is different than deathtime, the time when an object will be deleted [125]. To
minimize GC, many storage systems will physically separate objects by their deathtime |77,
84, 125, 156, 210, 264]. Grouping objects with similar deathtimes reduces WA. Hence,
accurately predicting deathtimes is vital for minimizing write amplification within LBAD.
Recent work uses ML to make these predictions |77, 264]. Unfortunately, ML solutions
require additional hardware that can increase emissions and cost.

Caches have more control over deathtimes than storage systems. Deathtimes are set by
the eviction policy, and thus determining an object’s deathtime is more straightforward.
For instance, in caches that evict based on TTLs, the TTLs can be used to group ob-
jects |263]. FairyWREN leverages its eviction policy’s popularity rankings and the WREN
interface to physically group objects by deathtime.

Eviction and garbage collection. Prior flash caches have attempted to reduce in-device
garbage collection. Many log-structured caches [78, 105, 158, 167] group objects into large
segments and trim these segments during eviction to minimize garbage collection. These
systems attempt to evict segments before device-level GC rewrites them. Unfortunately,
this does not ensure GC is prevented on LBAD devices, so some work has proposed leverag-
ing newer interfaces to guarantee alignment. DidaCache [220], for example, uses an Open-
Channel SSD [65] to guarantee its segments will align with erase units. Other proposals
to use more expressive interfaces re-implement LBAD-like GC on top of a ZNS SSD [85],
prohibiting optimizations like FairyWREN’s nest packing. All of these log-structured ap-
proaches suffer from high DRAM overheads and cannot evict individual objects without
additional writes.

Grouping by object size. FairyWREN separates objects into two object size classes,
large and small, similar to Kangaroo [179] and CacheLib [60]. This grouping is used to
minimize memory overhead. Allocating memory using size-based slab classes is often used
to reduce fragmentation [74, 128, 212, 220, 263]. Introducing additional object size classes
in FairyWREN would result in additional flash accesses, since FairyWREN does not index
the size classes to save memory. Instead, Fairy WREN reduces fragmentation by grouping
objects into either large segments in the LOC or sets in FwSets. These segments and sets
are periodically rearranged to prevent fragmentation.

89

90

Chapter 6

Scaling the 10-per-TB wall with
Declarative 10

“|T)he desert dingo is intermediate between the wolf and the domestic dogs...
[Dl]ingoes evolved to prey on small marsupials.”

Issam Ahmed. [§]

ARGE DISTRIBUTED STORAGE SYSTEMS store exabytes over hundreds of thousands
L of disks |75, 119, 194, 224, 254]. Mechanical disks (HDDs) have remained more cost-
effective than flash (SSDs) due to new technologies that increase HDD density, such as heat-
assisted magnetic recording (HAMR) [35, 221|. Most vendors have near-term roadmaps
for increasing HDD densities to over 40TB per drive, with decade-long targets for 100TB
drives leading to a 6x decrease in cost-per-TB [37]. These densities will allow hyperscalers
to accommodate data growth rates while also minimizing the power usage and physical
footprint of their storage systems.

Unfortunately, drive access speeds are not scaling proportionately to HDD capacities.
In particular, the IO supply — i.e., IOPS and bandwidth per device — has remained
roughly constant as capacity has increased (Sec. 2.3.3). Put differently, the 10 supply per
TB of HDD storage has been trending steeply downward. Systems currently match 1O
supply and demand by deploying flash caches that absorb application 1O before it reaches
HDDs [60, 93, 178, 181, 266]. However, as HDDs grow denser, we are approaching a new
regime where the total IO demand of datacenter workloads on HDDs will exceed supply
by the storage system — a phenomenon we refer to as the I0-per-TB wall. Beyond this
wall, storage systems will be unable to use denser HDDs, forgoing their power, footprint,
and emissions savings.

Maintenance tasks’ IO demand. To make the deployment of denser storage devices
feasible, IO demand on HDDs needs to be reduced. Most of active disk time stems from
various data maintenance tasks, such as scrubbing [132, 190, 215], reconstruction [82, 121],
capacity balancing, and transcoding [142, 144, 154]. Such maintenance tasks are crucial
for providing the durability and availability guarantees users have come to expect from
distributed storage systems. These maintenance tasks occur from the block layer to the

91

Task 1

Task 2 1 1
rks [l O []

pskio [l THIHNENEE =R
Task 1 I |

Task 2

Imperative 10

Disk 10 BB R]

Figure 6.1: Declarative 10 exploits task flexibility to reduce 10. Declarative 10
allows maintenance tasks to declare their maintenance tasks’ flexibility, creating overlap
in the 10 requests that are too far apart in time to exploit in imperative IO as seen in a
small example with 3 different maintenance tasks requesting 5 different pieces of data.

Declarative 10
o
wn
28
wW

data services (e.g., table stores and database systems) running atop storage systems. Im-
portantly, each maintenance task accesses large amounts of data with little to no reuse,
rendering caches ineffective.

Opportunity: Maintenance tasks’ flexibility creates reuse. While maintenance
tasks are individually hard to cache, we observe that there is significant data overlap
between different maintenance tasks. Although there is little reuse within scrubbing, for
instance, it overlaps with every other maintenance tasks. This data overlap across tasks
occurs too far apart in time to exploit. Fortunately, maintenance tasks are generally flexible
in order, time, and even data they access. A single maintenance task (e.g. "scrub a given
disk") is generally composed of several lower-level requests (e.g. "scrub a given block").
While a maintenance task aims to complete all of its requests within a certain timeframe,
the exact ordering, timing, and sometimes even the data of the requests is flexible. We
can thus coordinate the overlapping requests from different maintenance tasks to avoid
performing redundant 10.

Unfortunately, current imperative distributed storage interfaces (e.g., GET/PUT, read/write)
do not allow order, time, nor data flexibility — each request is for a specific data unit to
be accessed now (as seen in the top of Fig. 6.1). Co-designing all tasks to explicitly coordi-
nate data reuse using these interfaces is not a practical option for software development at
scale, where there are an ever-increasing number of maintenance tasks spanning numerous
system and organizational boundaries.

Our Solution: Declarative I10. We introduce Declarative 10, a new interface to
distributed storage systems to allows tasks to declare their upcoming IO needs along with
a deadline for those requests . Our system, DINGOS!, uses these declarations to coordinate

!Dingoes are Australian canines. DINGOS is Declarative INterface for Global Optimization of Storage.
Both rely on packs: dingoes to hunt kangaroos and DINGOS on packs of maintenance tasks to find 10
overlap.

92

Declaraticjy Task ,\M‘etadata

10 Planner DataI Metadata Servicg>\
Figure 6.2: DINGOS architecture overview. Declarative IO in DINGOS adds an

IO Planner to handle declarations. Tasks still access metadata and data as traditional in
distributed storage systems.

IO across maintenance tasks and minimize their aggregate IO demand. DINGOS aims to
read each declared block only once to satisfy all tasks needing that data (as seen in the
bottom of Fig. 6.1). While current systems issue maintenance IO in the order and time that
IO requests are issued, with declarative 10, each maintenance task declares all necessary
IO, along with an associated deadline. An IO Planner (Fig. 6.2) then decides when data
should be read from disk and notifies interested maintenance tasks of data availability. The
DINGOS IO Planner uses a rate-based scheduling heuristic and hierarchical bit-vectors to
find overlap across maintenance tasks for each scheduling quanta. It dispatches these
overlaps by erasure blocks to ensure a tiny cache suffices to absorb IO from maintenance
tasks.

Summary of results. We implement DINGOS on top of HDFS [224]. We evaluate DIN-
GOS on a 20-node HDD cluster, deriving workloads by profiling 3 hyperscalers’ main-
tenance tasks. DINGOS decreases 10 demand by 26%, showing that Declarative 10 is
a viable way to decrease disk 1O in bulk storage. In simulation, we find that DINGOS
reduces 10 by up to 40% with more maintenance tasks and that DINGOS requires little
cache overhead.

Contributions. This chapter contributes the following:

o Sources of disk 10: We identify that essential data maintenance tasks are prevalent,
their 10 requirements increase with data, and that their 10 is uncacheable.

® Declarative 10 interface: We introduce a new storage interface where tasks declare
their 10, time, and data flexibility, allowing an IO Planner to exploit data overlap to
reduce 10.

e DINGOS IO Planner: Our 10 Planner uses a rate-based scheduling heuristic and hi-
erarchical bit-vectors to achieve up to a 40% reduction in maintenance IO — showing
that Declarative 10 is a promising new interface for distributed storage.

6.1 Maintenance tasks

Although most IO demand to the distributed system comes from application 10, the
caching tier is highly effective at absorbing these requests. Hence, the IO demand that

93

A
B s | [
pplication Tier

Data Management Tier/ I \
/ Database \ ’ /Object Store\ e / Lakehouse \

e AN AN

.
.
.
Py

s1senbal
SN\ / PesY
anesodw|

Bulk Storage Tier

Figure 6.3: Imperative 10 architecture. Distributed storage systems receive impera-
tive 10 requests from all layers of the datacenter. Requests into distributed storage from
maintenance tasks are imperative today and less likely to be cacheable than other data
requests.

the HDDs of the bulk storage tier fulfill is disproportionately composed of maintenance
10, which is harder to cache (Fig. 6.3). Based on conversations with multiple datacenter
operators, maintenance tasks produce the majority of disk 10.

This section discusses why we have maintenance tasks (Sec. 6.1.1) considers the chal-
lenges in reducing maintenance 10 (Sec. 6.1.2), and finds that the flexibility of maintenance
tasks provides an opportunity to reduce their IO usage (Sec. 6.1.3).

6.1.1 Maintenance tasks are essential

Distributed storage systems need to ensure that applications can access their data with
high-performance guarantees at low cost and increasingly low emissions and energy-consumption.
Thus, storage systems are designed to optimize several objectives such as fault tolerance,
reliability, request latency, and low capacity overhead while both handling user requests
and failing hardware. Distributed storage systems run maintenance tasks to ensure these
properties. For instance, reconstruction ensures that erasure coding’s guarantees are main-
tained after one part of the stripe is lost, enabling fault tolerance.

However, maintenance tasks are not limited to the distributed storage system. These
tasks come from throughout the datacenter architecture (see Table 6.1 for a description of
common maintenance tasks). Shingled magnetic recording (SMR) disks internally garbage
collect to minimize capacity overhead [40]. Object stores also garbage collect to minimize
capacity overhead. Data lakehouses transcode data as it ages to save space while storing
newer data in narrower encodings to lower tail latency. Databases create indexes and

94

"(3104) eouemnioptod ‘(de))) Ajoeden ‘([oy]) AY[iqeipl ‘(I,]) 90URISI0) JNeR] — or])S 03RI0IS 1) I10]
[0S juejrodwr ouo 3SBI] Je S[[Y[NJ S} 90URUIJUIRUIL (DRG] *S3SE} 90URUDJUTEW UOWWIOD Jo Ssuorpdrisa(] :T'9 9[qel,

Suruue[d Aronb 19930 9311100} 0} SIINLIISIP dSRqRIRD SPUL]

sotronb aseqejep dn poads 09 jos eyep seynduwos-a1g

soueurtofrod Aoy 03 S(I(IH JO SYorI} OPISINO O} BIEP 107 SOAOA

sorronb dn pooads 09 seseqriep I0J SOXOPUIL S9IRII))

S00I1 98I0Wl POINONIIS-30] JO SIOAR] JUSIOPIP WOIJ B)eP SOUIqUIOIY

SOIOUD)SISUOOUIL 10 SSO[R)ep juasald 01 eyep soyeorydn(y

OJeu [[13S B)eP PUR BIRPRIOW IOY) IR} SINSUD 0) SOLIUS IO ‘$300[qO ‘SOl S30oy))
PI[RA (138 91e £o7) JRYY) 9INSUO 0} $309[q0 I0 ‘SOl ‘SyO0[q BIRP SO

SUTPOO 9INSRIO WOIJ 9[(RISA0IDI INQ ISO[ST 1R} BIRD SO)RIIINY

IOPIOO SOUI009(eJep sk 9deds oarS 0} SSUIPOOUD R)RP SoFURY))

990 ‘uornqrusip Ajoedes 10 sanjeroduo) ‘uoryeordelosd ‘surewiop jnej 1oy eiep SOAOIN
oseqelep 10 ‘(TAH HINS ‘©103S 300[qo oY) WOIJ SOLIJUd IO ‘SHI0[q ‘S300[q0 peap seaowoy

KoMK WX

X X

SO1)STIR)S O[qR],
SMOIA PIZI[RLIIRIN
Suo1)g 1oYS
UOIJRISUDLY) XOPU]
uorjoeduwo))
sdnxpeg

SN0 AJLISoju]
SUIqqNIDG
UOTIONIISTOIY
SUIPOOSURI],
sumouereqay
UOT1D9[[0D dFRgIer)

uorjdrroso(g

PY | 14 | dep | jg
aa19[(qO

SSeL,

95

materialized views for higher performance. While these maintenance tasks have similar
objectives, they are not typically distinguished from application IO by the storage system
— often getting the same priority as non-maintenance application 10.

6.1.2 Challenges in reducing maintenance 10

Maintenance tasks are not only essential, they are integral to reducing disk IO since they
both are prevalent throughout all sources of distributed system 10. Unfortunately, it is not
straightforward to reduce maintenance 10 without giving up on the important properties
that they provide. We identify three crucial challenges to reducing maintenance 10: (1) no
single maintenance task dominates the overall maintenance IO demand, (2) maintenance
tasks’ IO requirements scale with data volume, and (3) maintenance tasks are not cache-
friendly workloads. Taken together, these challenges limit the kinds of approaches that
can be used to dramatically reduce maintenance 10.

No single maintenance task dominates. Based on conversations with multiple com-
panies, no single maintenance accounts for the majority of maintenance IO — even when
only considering subsets of maintenance IO from bulk storage and data management lay-
ers. Hence, there is no clear single target for optimization. Furthermore, maintenance 10
is spread across different systems and different tiers of the datacenter architecture. This
means that there is no single system or logical group of systems that is a clear optimiza-
tion target. Instead, we must develop solutions that span many diverse maintenance tasks
generated by different systems and managed by different development teams.

Maintenance tasks grow with capacity. For several maintenance tasks, it is clear that
the IO demand scales with the amount of data. Scrubbing, for example, periodically reads
every piece of data, and thus grows proportionally with data volume. Reconstruction,
which occurs when disks fail, also demands more 10 as disks grow larger.

Maintenance tasks are hard to cache. As extensively shown in this dissertation (Ch. 2,
Ch. 4, Ch. 5), caching provides an effective way to reduce application IO demand generated
from a diverse array of systems [60, 93|. One might hope that larger or more optimized
caches be used to reduce maintenance 10. Unfortunately, maintenance 10 is hard to cache.
A single maintenance task generally scans through a large range of data with almost no
reuse between its requests. While data reuse does occur across maintenance tasks that
scan similar data ranges, these accesses tend to occur much farther apart in time than the
requests of application 10, meaning that caching for them is ineffective. Unfortunately,
this can result in maintenance IO thrashing the cache and therefore known maintenance
tasks, such as in the distributed storage system, avoid sending their IO many of the caching
layers.

The poor cacheability of maintenance IO is one of the central reasons that maintenance
tasks have come to dominate 10 demand on HDDs. Although far more application 10
is generated throughout the datacenter than maintenance 10, application 10 is greatly
reduced by the caching tier. Maintenance IO then has an outsize impact on the bulk
storage tier because it is relatively harder to cache. Therefore, we need a different solution

96

to reduce 10 from maintenance tasks while ensuring these tasks still fulfill their objectives.

6.1.3 Opportunity: Maintenance tasks are flexible

Despite the above challenges, we can still reduce maintenance 10 by exploiting data reuse.
In imperative systems, reuse typically occurs too far apart in time to be captured by
traditional caches. However, maintenance tasks are flexible. We can leverage this flexibility
to shift overlapping requests from different maintenance tasks closer together in time,
creating a highly cacheable series of requests.

Maintenance tasks often have order- and time-flexibility: a task does not need data
in an exact order or at a specific time, e.g. a task’s IO requests do not have precedence
constraints or per-request timing constraints. Instead, each task typically has one timing
constraint, a deadline by which all its requests must be completed. For instance, scrubbing
must read and validate every block of data, but it does not care if data z is scrubbed before
or after data y (order-flexibility). A scrubbing task also does not specify when data z must
be scrubbed, as long as all data is scrubbed within a specified period, typically about one
month (time-flexibility).

In addition to flexibility around when requests are executed, some maintenance tasks
are also flexible about which requests are executed — a phenomenon that we refer to as
data-flexibility. For instance, load balancing displays data-flexibility. There are typically
many hot files or blocks that are good candidates to be moved off a heavily-loaded disk.
The load balancing task can make progress by moving some subset of the hot data without
caring exactly which data is moved. Carefully selecting which data is requested by each
maintenance task can also improve reuse and reduce 10.

Imperative 10 impedes flexibility. Unfortunately, there is no way to express this flex-
ibility in today’s imperative storage interface. The imperative interface only allows a task
to specify that it needs a specific piece of data now, imposing order, time, and data con-
straints. As a result, the only way that reuse has been exploited across maintenance tasks
has been through the explicit coupling of task implementations to manually align accesses
to overlapping data ranges.

Rewriting maintenance tasks into a single task is not realistic. Maintenance tasks are
often managed by different teams, organizations, and even different companies, making
coordination of these tasks logistically difficult if not impossible. In addition to represent-
ing a large and complex development effort, this approach violates modular design — an
essential way to design large systems with many moving parts such as distributed stor-
age systems and the applications and data management services built on top of them. It
also does not help with fault tolerance. Combining tasks creates dependencies between
systems that are otherwise designed to fail independently — a losing proposition in com-
plicated distributed systems where correctness bugs are easy to introduce. For example,
in order to provide an end-to-end correctness guarantee, some object stores perform data
scrubbing that is redundant to the scrubbing done by the storage system. Combining the
implementation of scrubbing between these systems could violate these guarantees.

97

Distributed storage needs a new interface. To reduce maintenance tasks’ 10, we
need to expose their flexibility while still providing modularity. Thus, we need a new,
more expressive interface for distributed storage systems. In the next section, we describe
our solution — Declarative 10.

6.2 Declarative 10

The imperative IO interface does not allow maintenance tasks to express their flexibility
preventing 1O reduction. Therefore, we introduce Declarative 10, a new storage interface
that the system can leverage to improve data reuse. In this section, we look at Declarative
IO from the perspective of someone trying to implement a maintenance task. We first
give an overview of Declarative IO (Sec. 6.2.1), then define the interface more precisely
(Sec. 6.2.2), discuss how maintenance tasks can adopt a declarative paradigm (Sec. 6.2.3),
and explore how the interface modifies the correctness guarantees that maintenance tasks
using Declarative IO can expect (Sec. 6.2.4).

6.2.1 Interface Overview

The Declarative 10 interface centers on a function called declare. At a high level, declare
allows maintenance applications to send a declaration to the storage system that describes
a set of flexible read requests. The caller of declare passes a description of the data to be
read, a deadline by which the data is needed, and a callback that will notify the caller that
some of their data is ready to be read. When the callback is triggered, the maintenance
task should read the corresponding data through the standard imperative 1O interface.

Declarative IO has two main advantages. First, declare allows tasks to express time-
, order-, and data-flexibility to the storage system. To express order-flexibility, declare
allows tasks to specify multiple sets of IO in one call. The interface allows these 1O sets to
be completed in any order. The data requested in each set is then read together. To express
time-flexibility, tasks declare a deadline for all sets of 10 in the declarations. This states
that each IO set in the declaration just needs to be completed by the deadline, rather than
at a precise time (see Sec. 6.2.4 for more on timing guarantees). To express data-flexibility,
tasks specify the number of sets that should be completed before the deadline. This allows
a task to declare many sets, of which multiple will fulfill the tasks’ objective.

Second, by passing a callback to declare, tasks allow the distributed storage system
to select, shift, and reorder declared requests in order to vastly improve data reuse. By
exploiting time- and order-flexibility, the storage system turns data reuse that used to span
weeks into a series of overlapping read requests that occur within minutes. Furthermore,
by exploiting data-flexibility, the storage system can create additional reuse that would
not exist given an imperative IO interface. Crucially, Declarative IO allows the distributed
storage system to optimize across declarations from potentially disparate tasks managed
by different organizations. Any tasks that use the same distributed storage system can
have their IO reduced by using Declarative 10.

98

I class BlockSet { set<Block> blocks };
> declare(list<BlockSet> block_sets,

3 size_t sets_needed, time_t deadline,

A void callback(list<BlockSet> block_sets, bool overloaded));

Figure 6.4: declare call. Maintenance tasks use the declare call to specify sets of data
that the task needs before a deadline, communicating their flexibility explicitly.

6.2.2 Interface Details

We now describe Declarative I0’s interface in more detail. The main addition is the
declare call, formally specified in Fig. 6.4.

Specifying data. Many tasks require data that is grouped in a specific way. For instance,
transcoding requests data one stripe at a time, where a stripe consists of several blocks?.
Declarative 10 supports data grouping via BlockSet, a list of distributed storage blocks.
declare takes the argument block_sets, a list of BlockSets representing different task
requests. Each Block in a BlockSet corresponds to one unit of data used by the distributed
storage system (in practice, a Block is often tens of MBs). A Block specifies a logical
address in the distributed storage system, not a disk block or an LBA on a specific device.
The sets_needed argument exposes the data-flexibility of a task by specifying that any
subset of sets_needed requests from block_sets will fulfill the task.

Deadline. The deadline argument indicates the time by which the entire task should
be completed. In practice, different maintenance tasks exhibit time-flexibility on vastly
different time scales. For example, a task such as reconstruction may require a short
deadline (e.g. hours) whereas a task such as scrubbing might be done at the scale of weeks.

Callback. The callback argument is invoked when the storage system determines that
it is a good time for a task to read one or more of its declared BlockSets. The callback
function takes a list of BlockSets specifying which data should be read. The storage
system may use the callback multiple times before a declared task is completed.

Importantly, the callback is not passed actual data, but rather a collection of identifiers
describing which data to read. The task itself is then responsible for reading this data
using standard imperative read requests. Said another way, the callback serves as a strong
hint from the storage system to a task that reading the specified data now will result in
10 savings. As discussed in Sec. 6.2.4, the choice to rely on imperative read calls simplifies
the fallback mechanism in case a task is not completed by its deadline. At any time, a task
can read any outstanding data in the declaration, potentially lowering IO savings while
preserving correctness. If Declarative IO cannot complete a declaration by its deadline,
it may invoke the callback with overloaded=true, signaling the task to fall back to the
imperative interface as needed.

2Note that these are blocks in the distributed storage system, not local file system blocks. Importantly,
they are often O(MB) or larger.

99

5 class Segment { string file_path,

6 off_t offset, size_t length };

7 class SegmentSet { set<Segment> segments };

s def declareFiles(

9 list<SegmentSet> segment_sets,

10 size_t segment_sets_needed, time_t deadline,

11 void callback(

12 list<SegmentSet> segment_sets_selected, bool overloaded));

Figure 6.5: Supporting files in Declarative 10. Declarative IO extends the declare
call to support files using declareFiles.

Extending declare to files. Depending on where in the datacenter a maintenance task
originates, it may not express its data needs in terms of blocks. To address these cases,
we extend Declarative IO to support declarations in terms of files (Fig. 6.5) in addition to
blocks. declareFiles allows a task to declare requests as sets of file segments. Using the
storage system’s metadata service, the library translates declareFiles into declare block
declarations. If the file segments do not align to block boundaries, all blocks containing
part of the file segment are requested as part of the corresponding segment set. This
pattern can be extended to handle objects in object-based distributed storage systems or
other higher-level data structures.

6.2.3 Converting maintenance tasks to Declarative 10

Declarative 10 requires changing maintenance tasks to use the new interface. We highlight
three key considerations for maximizing the impact of Declarative IO when converting
these tasks: (1) fully express time- and order-flexibility, (2) hunt for data-flexibility, and
(3) simple declarations work well. We discuss these principles below by describing our
experience converting several maintenance tasks to Declarative 10.

Fully express time- and order-flexibility. Scrubbing is a particularly good target for
Declarative 10, because both it reads a lot of data and its conversion is relatively simple.
Scrubbing periodically checks that each block in the system is still valid over a long time
horizon (e.g., monthly). Imperative scrubbing iterates over all blocks at a fixed rate, impos-
ing both ordering and timing constraints. A naive declarative scrubbing implementation
might continue to generate scrubbing requests at a fixed rate, but allow each scrubbing
request to complete at any time before the next request. Although this naive approach
introduces some time-flexibility, it does not maximize either time- or order-flexibility.

A better approach would involve a single declaration to read all blocks with a one-
month deadline (Fig. 6.6). This gives the storage system much more freedom to scrub
blocks at any time and in any order, creating massive potential overlap with other tasks.
While this is a simple example, it illustrates how a small change to the declaration pattern
can drastically change the flexibility afforded to the storage system.

100

Timg =============s=ccccmccccommnna--- >

Imperative
Naive Declarative]I] 1
Declarative 'i |

Figure 6.6: Declarative scrubbing. Comparison of how scrubbing requests blocks
over time. Declarative IO allows scrubbing to express both order and time flexibility by
combining the scrubbing requests into one declaration.

Hunt for data-flexibility. Now consider the capacity balancing task, which moves data
between disks to ensure that all disks have about the same amount of data. We can
introduce time- and order- flexibility to the capacity balancing implementation similarly
to how we did in scrubbing: simply replace imperative reads with one declaration that
includes reads for each chosen block (Fig. 6.7). However, this solution ignores that capacity
balancing has a lot of data-flexibility.

Capacity balancing fundamentally needs to move some amount of data between disks,
but not any specific piece of data. This data-flexibility is not immediately apparent from
the imperative implementation of the task and is a new consideration in Declarative 10.
A more flexible implementation of capacity balancing is to declare all blocks that could be
moved (potentially all blocks on the disk) and how many need to be moved. This allows the
storage system to create data reuse between tasks that may not have otherwise accessed
the same data.

Imperative
Naive Declarative .

Declarative

. needed: 5 |

Figure 6.7: Declarative capacity balancing. Comparison of how capacity balancing
requests blocks over time. Leveraging the balancing task’s data-flexibility maximizes the
chance for overlap with other maintenance tasks.

Simple declarations work well. For more complicated maintenance tasks, the challenge
becomes how to group work. For example, compaction in log-structured merge (LSM)
trees [20, 24] has a more complex request structure (Fig. 6.8). Rather than operating on
blocks, compaction operates on sets of SSTables (e.g., files), generally one SSTable in level
n and all SSTables in level n + 1 with overlapping key ranges. Hence, the block set for a
compaction task should be expressed as all the segments comprising the several files with
overlapping key ranges in both the target compaction level and the one below.

101

It is tempting to make declarations that allow compacting all possible combinations of
files (one from level n, one or more from level n+ 1) to maximize data-flexibility. However,
this design will cause problems. These declarations will overlap, meaning that one file
could be targeted for compaction multiple times within a single compaction task. One
solution to this problem would be to develop more complex data-flexibility semantics for
Declarative 10. However, we err on the side of simplicity, and instead suggest declaring
non-overlapping requests. While this approach sacrifices some potential IO savings, it is
still sufficient to dramatically increase the data-flexibility of compaction. Now that we
have defined the sets and how to resolve conflicts, compaction declarations are similar to
rebalancing except that instead of each block set being a block, its several files worth of

blocks.
Level (n . <+— SSTable Q

Leveln

@ @& O
Level (n + 1)

Figure 6.8: Declarative LSM compaction. Units of work in LSM compaction. When
declaring compaction, we strive to declare clean cuts of work such as the purple files and
the red files instead of overlapping work such as the purple files and the green files.

6.2.4 Consistency with Declarative 10

Moving a task from imperative 10 to Declarative IO may change what data the task reads.
This clearly applies to tasks with data-flexibility, but even a task that reads a fixed set
of blocks may not see the same data. The imperative and declarative views of data may
differ because they look at the system at different times (see Fig. 6.10).

Correctly rewriting maintenance tasks using Declarative IO requires understanding its
consistency model and what guarantees the interface provides. The following section de-
scribes our assumptions about distributed storage system behavior, how Declarative 10
provides consistency based on these assumptions, and what happens in the event that a
declarative storage system cannot meet its deadlines.

Storage system assumptions. We target append-only distributed storage systems. The
append-only storage model is common in hyperscalars [75, 164, 194, 224] because it greatly
simplifies the consistency model. Append-only file systems, as seen in Fig. 6.9, provide
a guarantee of immutability on the block-level. Here, existing files only accept append
operations to add data, and any fully completed, or sealed, blocks are immutable. The
only way to change a sealed block is through deletion. Declarative 1O only accepts sealed
blocks.

Given the immutability guarantees of append-only distributed storage systems, we only
need to reason about the correctness properties of deletions, creations, appends, and meta-
data operations. While Declarative IO could be expanded for a general distributed storage

102

mmm - m

Figure 6.9: Block-file mappings. Files map to sealed blocks in append-only distributed
file systems

system, several additional consistency challenges would have to be considered, such as how
to handle blocks that change during the lifetime of a declaration.

Repurposing existing imperative logic for correct file deletions. A request from a
maintenance task might reference blocks that will be deleted between its declaration and
deadline. For instance, Block 4/ in Fig. 6.10 will be deleted before the tasks’ deadline.
Depending on the order Declarative IO returns blocks, the task may or may not get Block
4’s data. Thus, Declarative IO only guarantees that a task will read valid data from
BlockSets where its component blocks are not deleted during the entire lifetime of the
declaration. Declarative 10 can return callbacks to BlockSets that include a block deleted
before the deadline.

Since Declarative IO only notifies maintenance tasks and these tasks still need to use a
standard imperative read, declarative reads inherit the correctness guarantees of imperative
reads. Specifically, existing distributed storage systems cache data about where to fetch
blocks that can be stale by the time of the actual request. These systems use mechanisms
such as leases from the metadata service to ensure read consistency in the face of deletion.
Maintenance tasks using Declarative 10 can still rely on these consistency mechanisms.
Thus, even if they attempt to read deleted blocks returned in callbacks, the read will fail
as expected.

Time

v

Block 1 ! I

Block 2 | |
Block3 1
Block4 & :
Block 5 | |
Decla.ration Imperative lterator Read ~ Dea:iline

Figure 6.10: Block choice in scrubbing. An example comparison of which blocks
scrubbing could find request an iterative and a declarative implementation. Each block is
a BlockSet.

103

File creations and appends. After a maintenance task makes a request, new data might
be appended to the corresponding files or new files might be created. The resulting new
blocks will not be part of that request since the request’s blocks are mapped at declaration
time. Tasks can create new declarations if they need these new blocks.

Most maintenance tasks already handle new files and blocks in a similar fashion. For
instance, both the iterative scrubber and the declarative scrubber in Fig. 6.10 miss block
3. In fact, Declarative 10 provides a more exact guarantee than a standard iterator — it
will return for all blocks present at the time of declaration.

Metadata operations consistency. The final set of operations that affect Declarative
IO are metadata operations, particularly renames and changing access permissions. Since
we translate files into blocks, Declarative IO does not know about renaming and will send
callbacks to tasks even if the access permissions on the files have changed. However, similar
to deletions, this is not a problem since tasks will re-obtain permissions to read the data
using the imperative interface.

Overloaded system. While Declarative 1O tries to finish tasks before their deadlines, it
cannot guarantee that all deadlines will be met if the storage system is overloaded. When
a deadline is missed due to overload, the storage system will will inform the impacted task
using the callback with the OVERLOADED flag. The task may then immediately issue any
imperative requests it needs to complete, or the task may continue to wait for additional
callbacks if further delay is deemed to be tolerable.

6.3 DINGOS Design

We now introduce DINGOS, a distributed storage system that supports Declarative 10.
Our main addition is the DINGOS IO Planner, which receives declarations and schedules
them to reduce disk IO while meeting deadlines. In this section, we provide an overview
of DINGOS (Sec. 6.3.1), then discuss the IO Planner scheduler (Sec. 6.3.2) and the IO
Planner dispatcher (Sec. 6.3.3).

6.3.1 DINGOS Overview

DINGOS supports Declarative 10 and its new functions. It also must support existing
imperative interface calls for foreground applications and as the read mechanism for dec-
larations.

Imperative requests. As seen in Fig. 6.11, imperative requests, such as application re-
quests, operate in DINGOS just like in other distributed storage systems (Sec. 2.3.4).
These requests first go to the metadata service to translate file requests into node-specific
block requests and to get a lease on the requested data. The imperative task can then
query this data from the appropriate data nodes, traversing the cache to minimize disk 10.

Declarative requests. DINGOS differs from other distributed storage systems because
it supports Declarative 10. Unlike imperative requests, declarative requests go to a new

104

DeM Task \Metadata requests

¢~ Callback
Declarations || Planner || Dispatcher]
= p Data requests / Metadata Serwc/el>[\

= | ,
0 8 =-0000

10 Planner Data Nodes

H &

Figure 6.11: DINGOS overview. Imperative requests proceed as normal in DINGOS
for both metadata and data requests. Declared requests go to the a new component: the IO
Planner. The IO Planner keeps track of outstanding declarations, schedules some subset
of them every time quanta, and then dispatches them to minimize cache overhead.

component in DINGOS— the 10 Planner. The 10 Planner stores declarations and period-
ically decides which ones to execute in the next scheduling quanta. The planner assumes
that all maintenance tasks cumulatively have a total disk IO limit for a set amount of
time. The planner’s goal is to reduce disk IO while adhering to the IO limit and meeting
declaration deadlines. We implement a rate-based planner to optimize 10 while making
progress towards the deadlines (Sec. 6.3.2).

Once the planner decides which blocks to schedule for the next quanta, the dispatcher
determines a dispatch ordering. The goal of this ordering is to minimize the time between
callbacks that need the same data, effectively reducing the required cache space (Sec. 6.3.3).
The dispatcher can leverage heuristics, such as grouping by erasure blocks, to simplify
dispatching. To actually dispatch a declaration, its callback is invoked, indicating to the
task that it should imperatively fetch the associated data. When multiple tasks fetch the
same data at the same time, said data becomes cacheable and only one disk read must
occur for each block.

6.3.2 Scheduling in DINGOS’s 10 Planner

We now discuss how the IO Planner schedules declarations to reduce 10 while meeting
deadlines.

Problem definition. The main constraint in deploying high-capacity disks is IO availabil-
ity. As such, the IO Planner’s goal is to find the least amount of disk IO needed to fulfill
all declared requests within their deadlines. Specifically, the IO Planner must decide which
blocks to read in the next timestep given its set of outstanding declarations and a limit on
total disk 10. Declarations received during the scheduling process are not considered until
the next timestep.

We assume that maintenance tasks that access the same block within the same timestep
only need to read the block from disk once, i.e., that every block in a timestep can be cached
for the duration of the timestep. Furthermore, maintenance tasks will request blocks within
the same timestep that the block was scheduled. We also assume for simplicity that caching

105

cannot occur between timesteps for maintenance tasks using Declarative 10, since we want
to minimize our caching overhead.

Finally, we assume that the IO Planner will schedule the maximum number of blocks
allowed in the quanta unless there are no outstanding declarations. While we could po-
tentially reduce cumulative IO by delaying reading blocks, DINGOS aims more broadly to
reduce the 10 limit per quanta, or the maximum IO that maintenance tasks need, since
this is necessary to avoid the I0-per-TB wall.

Scheduling for reuse is NP-hard. To show that the problem is NP-hard, we take a
simplification of the problem where deadlines are infinite. Assume that we have an oracle
that knows all declarations and which block sets in each declaration will create the most
overlap if the declaration includes any data-flexibility. We want to create a schedule for
the chosen block sets that minimizes the maximum number of blocks read in any of n time
periods. We can reduce this problem to a VM packing problem [225] or a bin-packing
problem in the special case where there is no overlap. Since this is a simplification of our
scheduling problem, scheduling for reuse in DINGOS is NP-hard.

Rate-based scheduling. For DINGOS’s scheduling heuristic, we decide to prioritize
meeting deadlines over finding data reuse because (1) scheduling for reuse is NP-hard,
(2) we still observe significant data overlap, and (3) not meeting deadlines leads to more
imperative 10 without reuse. To bias the scheduler towards meeting deadlines, we im-
plement a rate-based scheduling heuristic. For each declaration, we calculate the rate of
blocks per quantum needed to finish the declaration by its deadline; the IO Planner prior-
itizes declarations with higher rates. If the IO available in the scheduling quantum is less
than what is needed to meet each declaration’s rate, we may have an overloaded system
depending on the overlap of outstanding declarations.

In order of decreasing rate, the planner chooses block sets for the next quantum. We
schedule entire block sets since they are the unit of work for each declaration. The planner
selects as many block sets as it can while adhering to the total disk IO limit. Since we
only need to read a block once per scheduling quantum, any blocks already scheduled in
an earlier block set are considered “free” and do not count towards the limit.

Once the IO Planner reaches the total disk IO limit for the quanta, it performs a second
pass over the remaining block sets to find those that are a complete subset of the blocks
already scheduled. It includes these block sets to this scheduling timesteps, since they are
free and do not contribute to the scheduled disk 10. This inclusion just ensures that the
appropriate callbacks are invoked for these block sets, notifying the maintenance task that
the data is available.

6.3.3 DINGOS’s dispatcher minimizes cache space

To match our scheduling assumptions, DINGOS needs to have cache space for all disk 1O
it schedules in a time period. Ideally, we would have scheduling timesteps that are as small
as possible to minimize cache size (on the order of minutes instead of hours). But small
quanta are not practical since our scheduling algorithm is O(block sets) and there can be

106

Desired of BlockSets from each declaration

| |£| |]
Allocation Hﬂ‘

Ratelbased Remlainder

Figure 6.12: DINGOS scheduler. DINGOS uses a rate-based scheduler which biases
toward completing all declarations by the deadline. It first finds the number of block sets
that need to be done each scheduling quanta to meet the deadline and

many outstanding declarations. Instead, we break DINGOS’s cache size dependency on
the scheduling timestep through DINGOS’s dispatcher.

The dispatcher takes the planner’s 10 schedule and divides it into smaller groups of
block sets. The dispatcher then selects an arbitrary ordering of these groups and, for each
group, issues callbacks for all related declarations.

Erasure blocks heuristic simplifies dispatching. To simplify this partitioning prob-
lem, we use a heuristic based on erasure blocks — a group of blocks that are erasure coded
together — to find dispatching groups. Since erasure blocks typically belong to a file,
many block sets are either single blocks or a set of erasure blocks. For each dispatching
group, we choose an erasure block in the IO plan and find all block sets that use any block
in that erasure block. We then include any other erasure blocks in our group that those
block sets use. The dispatcher keep iterating until all block sets in the dispatch group have
their blocks and all blocks sets that include the chosen blocks are in the dispatch group
and or the maximum cache size is reached. While dispatching to minimize cache space
can decrease the reuse in highly-connected 10 plans, we find that the dispatcher results in
small cache requirements without losing much reuse in practice (Sec. 6.4).

6.4 Evaluation

We now present the experimental results for Declarative 10. To evaluate Declarative 10,
we implement a prototype on top of HDFS, and additionally simulate a datacenter-scale
distributed storage system using Declarative 10.

6.4.1 DINGOS on top of HDF'S

To explore the impact of Declarative IO on a real system, we build DINGOS on top
of HDFS. We modified scrubbing, reconstruction, rebalancing, and transcoding to use
Declarative 10. Scrubbing and rebalancing are modified as described in Sec. 6.2.3. Both
reconstruction and transcoding are modified to expose time- and order-flexibility.

107

50
—— Baseline
40 | Declarative
@ 30 -
[ai]
E 20 -
10 ~
0 L ; T T T T T T
0 100 200 300 400 500 600

Time (m)

Figure 6.13: Declarative vs imperative 10 reads over time. Disk read IO in the
cluster for DINGOS and the baseline default HDFS. A Datanode was added at minute 8,
and Datanodes were dropped at minute 204 and minute 398. 1/16th of the data is marked
for transcoding every 35 minutes. DINGOS can schedule 24 MB/s of reads each quanta

Experimental setup. We evaluate our declarative version of HDFS on a local cluster
with 1 Namenode, 16 Datanodes (before adding and dropping), 1 node for the Balancer,
and 1 node for the transcoding workload. The cluster consists of SuperMicro 4042G-6RF
nodes, each with 64 cores, 128 GiB RAM, 2x 3TB HDDs and 64GB SSD connected with
40 GbE and FDR10 InfiniBand. We compare DINGOS against a default version of HDF'S.
The IO Planner is configured with a period of 60 seconds.

We distinguish between logical and physical IO to determine the efficiency of Declarative
I0. Logical 10 represents bytes read or written by HDFS, regardless of whether those bytes
were in the cache or disk. Physical 10 represents disk 10. We determine logical work by
collecting read and write metrics from within HDFS. For instance, if HDFS reads 24 MB
for a reconstruction task, that counts as 24 MB of logical work, even if it only generated
16 MB of disk 10. To calculate physical 10, we measure disk statistics with iostat.

By default, HDFS leverages the OS for caching. We do not use the explicit cache
pinning mechanism because it only works at a file level. To restrict cache size since we
do not run a foreground workload. We limit each Datanode process to 1 GB of memory
using cgroups. We explore the necessary cache space more thoroughly with the simulator
Sec. 6.4.2.

DINGOS reduces I0 by 24% over default HDFS. We now evaluate our DINGOS
implementation. In this experiment, the cluster starts with 500 GB of data split into 64
MB files. All files begin in a 3-way replication scheme. Over the course of the experiment,
we add one Datanode and drop three Datanodes to trigger the appropriate amount of
rebalancing and reconstruction. The transcoding workload marks 11 GB of files every 12
minutes.

Fig. 6.13 illustrates disk IO in the HDFS cluster over the course of the experiment.
Over the course of the experiment, Declarative IO has 24% fewer 10s than default HDF'S.
The baseline configuration achieves an efficiency of .97x (logical IO per physical 10). In

108

0.8 -
0.6 1
0.4 A
0.2 -

O-O 1 1 1 1 1
0 2 4 6 8

Times referenced

Figure 6.14: CDF of blocks accessed by maintenance tasks. Cumulative density
function of block references in maintenance task declarations. The x-axis marks how many
declarations a block appeared in. 71.7% of blocks are referenced more than once.

comparison, HDFS with Declarative 10 has an efficiency 1.32x. In other words, given a
maintenance budget of 1 MB/s/TB, default HDFS can achieve about 1 MB/s/TB of work,
while Declarative IO achieves 1.32 MB/s/TB. DINGOS’s IO Planner expects an efficiency
of 1.37x, but not 100% of read overlaps occur as expected. We find that this occurs mostly
due to degraded reads after disk failure.

In addition, compared to the default version of HDFS, DINGOS more evenly distributes
maintenance IO because DINGOS controls how much IO can occur each quanta over all
of the tasks whereas imperative 10 requires per task control. This control shows another
benefit of Declarative 10, being able to centrally manage when maintenance 10 occurs
— a useful tool that could be used for example to increase maintenance IO when there
is less foreground work, prioritize recovery in large-scale failures, or bias maintenance 10
towards disks with more available IO (such choosing data in stripes on lower-capacity
disks). Limiting maintenance IO when there is more foreground work and increasing its
rate when there is less foreground work would also minimize the impact of maintenance 10
on foreground work and could be done based on dynamic changes in the storage cluster,
while still ensuring the maintenance 10 occurs.

Most IO from maintenance tasks has overlap. Fig. 6.14 shows how often maintenance
tasks access the same data. When the same blocks are frequently referenced by multiple
tasks, it is more likely that Declarative IO can find a schedule that overlaps them. In this
experiment, the IO Planner managed to schedule roughly 25% of the maintenance work
for “free” (that is, the same block is read by multiple scheduled declarations).

6.4.2 DINGOS in Simulation

To evaluate 10 savings at scale and assess the effectiveness of DINGOS, we build a time-
driven cluster storage simulator. This section answers four key questions: (1) How much

109

Maintenance task | Event frequency | Deadline | Cluster 1 | Cluster 2
Reconstruction On disk failure | 36 hours 21% 17%
Scrubbing Once in 30 days | 30 days 2% 20%
Garbage Collection | Once in 6 hours 5 days 42% 17%
File transcoding | Once in 12 hours | 5 days 15% 25%
Capacity balancing | Once in a day 5 days 14% 10%
Index checking Once in 15 days 7 days 2% 5%
File scrubbing Once in 30 days | 30 days 4% 6%

Table 6.2: Workload parameters. The simulator uses the event frequency and deadline
parameters for both clusters. Each cluster has a different division of 10 between the
maintenance tasks.

10 does DINGOS eliminate at scale and with more workloads? (2) How does the IO supply
affect DINGOS? (3) How much additional cache does DINGOS need?

Simulator setup. The simulator models 1O activity from real-world datacenter mainte-
nance workloads in discrete 1-hour steps over a 30-day period. The simulated cluster stores
data in 250 MB files, distributed in 8 MB blocks across 4 TB disks. The cluster maintains
80% storage utilization. Blocks are either 3-way replicated or part of 6-0f-9 or 30-0f-33
erasure-coded stripes.

We simulate seven workloads: reconstruction, disk scrubbing, garbage collection, file
transcoding, index checking, file scrubbing, and rebalancing.

Reconstruction is triggered by random disk failures. Blocks from the failed disk are
recovered via replication or erasure-coded stripes. Each failed disk is replaced to maintain
cluster size. Disk scrubbing reads all written blocks to verify integrity. Garbage collection
targets a subset of files designated as part of an object/KV store. Files are selected at
random at fixed intervals, read fully, and rewritten with new blocks. Transcoding emulates
age-based re-encoding for space efficiency [154|. Files are ingested in 3-way replication,
then progressively transcoded to 6-0f-9 and 30-0f-33 EC schemes. Similar to garbage
collection, files are fully read and re-written with new blocks. Index checking reads a small
set of blocks to allow databases to check if their index is valid. File scrubbing reads all
blocks of selected files to check data integrity. Rebalancing identifies disks with skewed
usage (by capacity or IO load) and moves a fraction of their blocks to other disks. All blocks
stored on the disk are candidates to be moved. Additional workload parameters—such as
event frequency and deadlines—are listed in Table 6.2.

Declarative 10 saves up to 40% of maintenance reads. DINGOS reduces 10 de-
mand by exploiting overlap across maintenance tasks. We measure savings as the ratio of
logical work (total data read by workloads) to physical work (data read directly from disk).
Declarative 10 savings depend on two factors: (1) the IOPS demand of maintenance tasks,
and (2) the IOPS supply, i.e. bandwidth available to them.

First, the total IO demand affects the opportunity for overlap. To model variation across
clusters, we also simulate two clusters. Cluster 2 is a higher-demand scenario with 33%

110

604 [7] Supply 70 7 7 Supply
CZ3 0.25 MB/s/TB CZ3 0.25 MB/s/TB
/] =3 0.5 MB/s/TB | 0] PN =3 0.5me/se
30 1 &3 1MB/s/TB /] &= 1 MB/s/TB
k5 Iy s MB/s/TB D 504 /N o= 1.5 ve/sma
221N g BRI 0
o | N N 0“1 VNm K
4+ 307)
o /\ /\ S 30 /\X /\
RN N | L N
/N /\ NS /\
10 ~ /\ oo /\3? 10 A /\X /\
0 / oo /\ o 0 / X /\aﬂ
Cluster 1 Cluster 2 Cluster 1 Cluster 2

(a) Savings with IO demand of 1.21 MB/s/TB (b) Savings with IO demand of 1.6 MB/s/TB

Figure 6.15: 10 savings with different supply and demand.

more 1O than cluster 1. They also have their IO divided differently between maintenance
tasks (Table 6.2).

Second, while the potential for savings is independent of the supply of IOPS, the real-
1zed savings depend on when requests are scheduled. In surplus, with ample bandwidth,
DINGOS is able to schedule even recently declared requests to exploit idle disk resources,
without waiting for potential byte overlap with future requests. Conversely, when band-
width is scarce (i.e., when the supply of disk IO is high), DINGOS packs multiple requests
over a wider time period to exploit byte overlap. In general, bandwidth for maintenance
tasks is capped by storage administrators to protect the SLOs of user-facing foreground
requests. This constraint is becoming more pronounced as available IOPS-per-TB continue
to decline with newer disk models.

We report IO savings as a function of available bandwidth (in MB/s per TB) in Fig. 6.15.
DINGOS is able to save up to 70% of IOPS in very low bandwidth scenarios. Unfortunately,
Declarative IO with an available bandwidth of 0.5 MB/s/TB causes deadline violations in
both cluster. DINGOS saves up to 40% of maintenance reads under 1.0 MB/s/TB supply
conditions where it can meet deadlines.

Declarative 10 needs minimal cache space. Declarative 10 depends on exploiting
cache space to allow tasks to re-use I0. The additional cached blocks cannot have a large
effect on foreground IO cache misses. We show that Declarative 10 is able to effectively
save 1O with as little as 8 MB of cache per disk (Fig. 6.16) — essentially one block per
disk.

111

30 4 Cache size 30 4 = Cache size
O?II] 8 MB/disk ?o?tzl 8 MB/disk
S 16 MB/disk [] S 16 MB/disk _ f
25 b OO.E 32 MB/disk /\ 25 TXOO.E 32 MB/disk /\
T VINCY o 64 ma/aisk N 9 N o me 64 ma/aisk N
ﬁ 204 ¥ oo 4 ﬁ 204 ¥ Xoo 4
o | VN¥e N o | INES A
= 15 4 o / < 15 ><O /
T /N Y o N o INCY o N
‘;-E 10 / OCI- / ‘;_E 10 A / XOO /
Q Q
/\ o i\ /\i o| ;\
TN Yo TN Yo
0 / 5] N 0 ./ [s] N
Cluster 1 Cluster 2 Cluster 1 Cluster 2

(a) Savings with IO demand of 1.21 MB/s/TB (b) Savings with IO demand of 1.6 MB/s/TB

Figure 6.16: Cache size vs 10 savings. IO savings with different cache sizes, with
supply = 0.75 MB/s/TB

6.5 Related Work

This section discusses additional related work with similar techniques and goals to Declar-
ative 10.

Duet and Quartet. Duet and Quartet are the two systems closest to DINGOS. Duet [417]
re-order local maintenance reads based what is in cache. Duet notifies modified mainte-
nance tasks when data in the cached data changes. Quartet [100] extends this approach
to work for map-reduce jobs. DINGOS does not rely on what is in the caches but rather
pre-declared work from different maintenance tasks. This approach allows Declarative 10
to make a more streamlined interface that can be used across many maintenance tasks.
Declarative 10O also introduces both time- and data-flexibility to increase reuse.

Disk-level optimizations. We also see the re-order of IO in some disk-level optimizations.
For instance, freeblock scheduling [169] reorders low-priority IO to exploit disk-head time
spent rotating to the right disk location. This can be extended to local maintenance
reads [239]. These optimizations are orthogonal to Declarative IO since the maintenance
reads will still go through these disk-level optimizations.

Semantically-smart disks. Semantically-smart disks [49, 226, 227| aim to understand
the structure of the higher-level system such as the file system or database to make better
data placement decisions or secure deletion of data. These disks increase functionality
with or without changing the disk interface. Declarative IO addresses a different problem
— the impending 1O0-wall in distributed storage system on HDDs — and takes a different

112

approach — embracing interface change as necessary to solve its problem. We also see the
interface change as incrementally deployable since DINGOS starts seeing benefits when
only a few maintenance tasks are modified.

Database-level optimizations. The database community combines data requests, such
as through shared scans [42, 50|. These optimizations rely on having database queries —
which do not occur for many maintenance tasks. Declarative 10 instead targets the file
and block level since all maintenance tasks that want data must eventually go through the
distributed storage system. Thus, we need an interface specifically at that layer, and we
find that simpler interfaces than those in databases are sufficient.

Reducing 10 from individual maintenance tasks. There has been work trying to
reduce IO from individual maintenance tasks such as transcoding [154]. We view this work
as orthogonal — any improvements in reducing this IO will just add to the end goal of
overcoming the 10-per-TB wall and deploying more dense hard disk drives.

RAID. RAID [82] advocated for an array of lower-capacity, inexpensive disks to decrease
cost. Today, RAID still has a large impact on distributed storage in the form of erasure
coding and replication. However, its motivation to use lower-capacity disks is no longer
present because the cheapest, lowest-emissions disks are the highest-capacity disks.

113

114

Chapter 7

Conclusion

“Sustainability is not just about adopting the latest energy-efficient technologies or
turning to renewable sources of power. Sustainability is the responsibility of every
individual every day. It is about changing our behaviour and mindset to reduce
power and water consumption, thereby helping to control emissions and pollution
levels.”

Joe Kaeser [19].

HIS DISSERTATION addresses the gap on research to reduce storage emissions in dat-
T acenters, particularly focusing on embodied emissions where storage is the dominant
source of emissions. We find storage emissions are primarily from the storage devices them-
selves and identify that IO limits the use of denser, longer-lived flash and HDDs. Since
these are the two ways to reduce embodied emissions from a datacenter perspective, this
dissertation focuses on reducing IO to enable more sustainable storage.

We present techniques to reduce 10 through increasing the utility of each read or write
in the data-retrieval system by trying to achieve multiple objectives through each 10. To
accomplish higher 1O utility, we had to rethink both the device-system and the storage
system-user interfaces. In particular, we focused on two uses for storage devices in the
datacenter: flash caching and bulk storage.

For flash caching, we present both Kangaroo and FairyWREN to reduce writes to flash,
allowing for longer flash deployments with denser drives. Kangaroo reduce application-level
write amplification through exploiting hash collisions between objects in its on-flash log to
move multiple objects each time a set is rewritten. FairyWREN then tackles device-level
write amplification through classifying and exploiting new WREN interfaces that allow
caches to have control over garbage collection writes. FairyWREN then combines these
writes with Kangaroo’s log flushes to reduce writes. Together, these improvements reduce
writes by 28x and emissions by over 50%.

For bulk storage, we introduce Declarative IO — a new distributed storage interface
that allows us to combine distributed system reads from different maintenance tasks into
one disk read. Our implementation, DINGOS, allows us to reduce reads by up to 40%
relative to traditional, imperative interfaces, showing that this interface is a promising
approach to reduce disk 10. This IO reduction is essential for deploying new denser HDDs
that have lower, emissions-per-bit.

115

All of these systems support the thesis: reducing 1O, through increasing the utility
of each read and write and developing more expressive and symbiotic interfaces, enables
more sustainable storage systems in datacenters. They also are some of the first systems
that show how systems-level redesigns can significantly reduce storage emissions, meaning
that we do not have to wait for manufacturers to become greener to reduce embodied
emissions. Rather, we can design systems to reduce emissions through identifying already
existing hardware that embodies less carbon emissions and enable the deployment of that
hardware through building more efficient systems that address sustainability bottlenecks.

7.1 Future work

While this dissertation makes significant progress toward sustainable data retrieval sys-
tems, there is more work to be done. In this section, we discuss future directions starting
with flash caching, then for declarative 10, and finally more broadly in reducing storage
emissions.

7.1.1 Flash caching

There are several opportunities to further improve flash caching.

Pushing the Pareto curve between writes, misses, and DRAM overhead. Kan-
garoo and FairyWREN both enable new points on the trade-off space between writes,
misses, and DRAM overhead. There is potential to make a more optimal trade-off space.
Particularly, we leave unexplored using multiple hash functions to increase hash collisions.
This could allow a flash cache to further minimize writes, but could increase the number of
reads needed to find objects or alternative the DRAM overhead for filters to minimize these
reads. The design would also have to carefully consider how to minimize conflict misses.
Additionally, our flash caching work is limited to using Bloom filters in memory. There are
more information-optimized filters that could decrease memory overheads [109, 193, 195].
Finally, we explore separating sets by likelihood of object eviction in FairyWREN. This idea
could be extended to more temperature divisions, beyond just hot and cold to potentially
further reduce writes at the cost of complexity and increased likelihood of misprediction.

Can we break the lifetime vs density trade-off in flash? In FairyWREN, we found
that flash writes decrease dramatically with per-cell density, and increasing lifetimes by
using less dense flash leads to lower emissions. This result shows a trade-off between
reducing flash embodied emissions through increasing density or increasing lifetime, since
flash’s write endurance limits both. However, this trade-off is not fundamental because flash
can decrease density overtime and likely regain its extended lifetime. We can investigate
whether it’s possible to get the best of both worlds — a long lifetime flash device that
reduces density as it wears out.

Does persistence help recovery from metastable failures? In this dissertation, we do
not leverage flash’s persistence for caching. Flash is chosen instead because it is a cheaper,

116

lower emissions alternative to DRAM that is more performant than bulk storage’s HDDs.
A problem more generally with large caches is that when they fail, the storage hierarchy
enters a metastable failure [72, 130]. Essentially, the system that can handle a given load
in a stable state can only handle a fraction of that load after cache failure, even when the
cache servers return. Since the caches have to be warmed up after failure, the underlying
storage system still sees higher load than under stable conditions, inhibiting returning to
a stable state. We could potentially do more to leverage flash persistence to reduce this
load amplification that occurs after cache failures.

7.1.2 Declarative 10

Now, we discuss future ideas to improve Declarative 10.

Can we improve DINGOS? DINGOS is an initial system that supports Declarative
10. However, we believe there is room for continued research to improve how the system
works. For instance, DINGOS avoids using too much cache space to minimize its impact
on foreground applications. Instead of just minimizing disruption, DINGOS could use
foreground requests to further reduce IO by understanding what data is in the cache
and prioritizing declarations for those requests since they would need less disk 10. This
optimization would require further integrations with the caches and thus would need to
make sure not to slow down the caching system.

DINGOS could also use a more optimized scheduler. DINGOS uses a rate-based sched-
uler that always schedules work. This policy is pretty good for basic maintenance workloads
when we are aiming for lowering our maximum IO load since that maximizes disk density.
However, if the declarations become more complicated, it may make sense to further op-
timize the scheduler, such as by delaying requests to maximize IO overlap. It would also
behoove this work to have a better theoretical understanding of the optimal scheduling
policy.

Extending Declarative IO beyond maintenance tasks. While we target maintenance
tasks with Declarative IO because they are more flexible and are responsible for a large
portion of disk IO, there are other tasks amenable to Declarative 10. Since adding more
tasks would make Declarative IO more efficient, it would further to reduce disk 10 to
include these tasks.

User tasks such as ML training or analytics are a large source of IO and have inherent
flexibility, particularly in ordering. These applications have two main challenges: they
have demanding performance requirements and their developers have little knowledge of
the storage stack. To target these applications, Declarative 10 needs to have stronger
timing guarantees and not require extensive storage knowledge to integrate.

Additionally, it would increase declared work to add a declarative interface to public
cloud storage, such as an additional interface to S3. This would require better expressing
SLAs and considering how to price declarations. While presumably they would result in
cheaper reads to encourage adoption, there are challenges attributing the reads correctly
to different declarations.

117

What happens if bulk storage moves to flash? If bulk storage moves to flash, writes
become the fundamental limitation. Datacenters would need to reduce writes in bulk
storage to deploy dense flash. To accomplish this, we need to combine writes. Distributed
storage has different types of writes, such as adding new data, moving data, and regrouping
data. Importantly, these writes do not always conflict, for instance, regrouping and moving
data writes do not conflict. Declarative IO could be expanded to combine writes, by
carefully categorizing each write’s goal. The resulting system could also incorporate lifetime
so new data can also be more intelligently placed, reducing regrouping writes.

7.1.3 Sustainable storage
Finally, we step back and discuss ideas to further reduce storage emissions.

Increasing HDD lifetime. Although in this dissertation, we address increasing flash
lifetimes, we do not try to increase HDD lifetimes. This discrepancy is due to HDDs
dramatic increases in failure rates as lifetime increases. For instance, reported annual
failure rates can double when lifetime increases from three to six year lifetimes [143] as
HDDs enter end of life [106, 107, 260]. We believe that increasing HDD lifetime is possible,
but would require a different approach such as adaptive redundancy or enabling partial
failures can mitigate extra failures caused by extended lifetime. These approaches could
also help flash lifetimes.

Adaptive redundancy was developed to enable lower capacity erasure-coding schemes
during the useful life phase of HDD deployment [143, 144, 145]. For extending device life-
time, a similar idea could ensure durability at older ages — without requiring additional
capacity overhead during the traditional lifetime. This reduction from embodied emis-
sions will have to be balanced with transitioning the erasure codes with age, which causes
additional 1O that stresses bandwidth particularly for denser drives.

Another way to mitigate the increased failure rates is to embrace partial failures. Al-
though storage devices present a fixed capacity, this is not the reality. SSD cells wear out
at different rates. HAMR HDDs can have some lasers fail. Sectors on HDDs can develop
defects. While devices today can handle a limited number of defect failures, the device
must fail if it no longer has the advertised fixed capacity. Thus, these partial failures
are total failures today, causing us to lose usable capacity that we have already paid the
embodied emissions for. We need to reconsider total failure and enable partial failure by
changing the storage stack and how clouds deploy and replace drives. For HDDs partic-
ularly, while we generally know that annual failure rates increase with age [202, 214], we
do not have the telemetry to know exactly why the device failed, limiting our ability to
determine the emission benefits of partial failure. For instance, a HAMR drive with one
laser failing results in a partial failure whereas the drive’s only actuator no longer being
reliable results in a complete drive failure since no part of the device is readable.

Reconsidering which storage media to choose. If we push using fewer, denser devices
to the extreme, we need to consider media typically meant for archival storage: tape [216],
glass [48], and DNA [102, 188]. All of these media have much longer access times, so we
would need workloads that can tolerate these longer access times. The potential benefit is

118

lower emissions. Tape has the potential to lower emissions by 87% per bit [136]. Unfortu-
nately, this estimate does not include the robots and climate control needed to deploy tape,
which significantly offsets its emissions reduction. Both glass and DNA are much denser
than tape, so they have the potential to reduce emissions, but we cannot determine their
emissions potential until more data is available on their lifecycle embodied and operational
emissions, particularly when factoring in their achievable 10.

Better metrics and transparency. To truly build sustainable datacenters, we need to
better understand where carbon emissions come from and how to reduce them so that
systems designers can include sustainability as a first-order metric when considering future
computer systems. Finding up-to-date, accurate carbon emissions estimates is non-trivial.
This difficulty has real consequences, such as not appreciating the impact of storage on
embodied emissions [180]. While this dissertation aims to add some transparency to the
carbon emissions of storage, increasing this knowledge further is essential so that the re-
search community can focus on projects that have the most impact and understand the
trade-offs that are inherent to designing sustainable systems.

119

120

Bibliography

1]
2]

3]
[4]
[5]

(6]
7]
8]
9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

Is there a limit to the number of layers in 3d-nand? https://semiengineering.com/
is-there-a-limit-to-the-number-of-layers-in-3d-nand/.

Azure cache for redis. https://azure.microsoft.com/en-us/services/cache/
#what-you-can-build 5/5/21.

Amazon dynamodb. https://aws.amazon.com/dynamodb/features/ 5/5/21.
Fatcache. https://github.com/twitter/fatcache.

Redis on flash. https://docs.redislabs.com/latest/rs/concepts/
memory-architecture/redis-flash/.

Amazon sustainability. https://sustainability.aboutamazon.com /climate-solutions.
Apache traffic server. URL https://trafficserver.apache.org. Accessed: 2019-04-22.

Dingoes aren’t just feral dogs, says study. https://phys.org/news/
2022-04-dingoes-feral-dogs.html. (Accessed on 06/15/2025).

Disk prices. https://jcmit.net/diskprice.htm.

Memory prices. https://jcmit.net/memoryprice.htm.

Superb fairy wren. https://wildlifewonders.org.au/wild-1lives/superb-fairy-wren.
Flash prices. https://jcmit.net/flashprice.htm.

Climate change is humanity’s next big moonshot. https://blog.google/outreach-
initiatives/sustainability /dear-earth/, .

Helping you pick the greenest region for your Google Cloud re-
sources. https://cloud.google.com/blog/topics/sustainability/
pick-the-google-cloud-region-with-the-lowest-co2, . (Accessed on 04/26/2024).

How Lasers Could Unlock Hard Drives With 10 Times More Data
Storage. https://www.popularmechanics.com/technology/a20078/
heating-magnets-lasers-could-be-the-key-magnetic-recording/, .

Seagate Reveals HAMR HDD Roadmap: 32TB First, 40TB Follows. https://www.

tomshardware.com/news/seagate-reveals-hamr-roadmap-32-tb-comes-first, .

Seagate: HAMR is nailing it - mno looming 20TB to 30TB
capacity problem. https://blocksandfiles.com/2021/09/24/
seagate-hamr-on-course-no-looming-20-to-30tb-capacity-problem/, .

IMEC netzero virtual fab. https://netzero.imec-int.com/. (Accessed on 04/26/2024).

Sustainability is everyone’s responsibility. https://gulfnews.com/opinion/op-eds/

121

https://semiengineering.com/is-there-a-limit-to-the-number-of-layers-in-3d-nand/
https://semiengineering.com/is-there-a-limit-to-the-number-of-layers-in-3d-nand/
https://azure.microsoft.com/en-us/services/cache/#what-you-can-build
https://azure.microsoft.com/en-us/services/cache/#what-you-can-build
https://aws.amazon.com/dynamodb/features/
https://github.com/twitter/fatcache
https://docs.redislabs.com/latest/rs/concepts/memory-architecture/redis-flash/
https://docs.redislabs.com/latest/rs/concepts/memory-architecture/redis-flash/
https://trafficserver.apache.org
https://phys.org/news/2022-04-dingoes-feral-dogs.html
https://phys.org/news/2022-04-dingoes-feral-dogs.html
https://jcmit.net/diskprice.htm
https://jcmit.net/memoryprice.htm
https://wildlifewonders.org.au/wild-lives/superb-fairy-wren
https://jcmit.net/flashprice.htm
https://cloud.google.com/blog/topics/sustainability/pick-the-google-cloud-region-with-the-lowest-co2
https://cloud.google.com/blog/topics/sustainability/pick-the-google-cloud-region-with-the-lowest-co2
https://www.popularmechanics.com/technology/a20078/heating-magnets-lasers-could-be-the-key-magnetic-recording/
https://www.popularmechanics.com/technology/a20078/heating-magnets-lasers-could-be-the-key-magnetic-recording/
https://www.tomshardware.com/news/seagate-reveals-hamr-roadmap-32-tb-comes-first
https://www.tomshardware.com/news/seagate-reveals-hamr-roadmap-32-tb-comes-first
https://blocksandfiles.com/2021/09/24/seagate-hamr-on-course-no-looming-20-to-30tb-capacity-problem/
https://blocksandfiles.com/2021/09/24/seagate-hamr-on-course-no-looming-20-to-30tb-capacity-problem/
https://netzero.imec-int.com/
https://gulfnews.com/opinion/op-eds/sustainability-is-everyones-responsibility-1.1280327
https://gulfnews.com/opinion/op-eds/sustainability-is-everyones-responsibility-1.1280327
https://gulfnews.com/opinion/op-eds/sustainability-is-everyones-responsibility-1.1280327

sustainability-is-everyones-responsibility-1.1280327. (Accessed on 06/16/2025).
[20] Leveldb. https://github.com/google/leveldb.

[21] Makersite Data Platform. https://makersite.io/makersite-ai-data-apps/. (Accessed
on 04,/26/2024).

[22] Ssd over-provisioning and its benefits. https://www.seagate.com/blog/
ssd-over-provisioning-benefits-master-ti/.

[23] Wd and tosh talk up penta-level cell flash. https://blocksandfiles.com/2019/08/07/
penta-level-cell-flash/ 5/17/22.

[24] Rocksdb. http://rocksdb.org.

[25] Samsung plans big capacity jump for ssds, preps 290-layer v-nand this year,
430-layer for 2025. https://www.tomshardware.com/pc-components/ssds/
samsung-plans-big-capacity-jump-for-ssds-preps-290-layer-v-nand-this-year-430-layer-for-:
[26] Skyhawk datasheet. https://www.seagate.com/www-content/datasheets/pdfs/
skyhawk-3-5-hddDS1902-6-1710US-en_US.pdf, 2017

[27] Facebook reports first quarter 2020 results. investor.fb.com, Apr 2020.

[28] Exos x10 data sheet. https://www.seagate.com/files/www-content/datasheets/pdfs/
exos-x-10DS1948-1-1709-GB-en_GB.pdf, 2021.

[29] Exos x18 data sheet. https://www.seagate.com/content/
dam/seagate/migrated-assets/www-content/datasheets/pdfs/
exos-x18-channel-DS2045-4-2106US-en_US.pdf, 2021.

[30] Twitter first quarter 2021 results. investor.twitterinc.com, May 2021.

[31] Micron 7450 ssd with nvme. https://www.micron.com/content/dam/micron/global/
public/products/product-flyer/7450-nvme-ssd-product-brief.pdf, 2022.

[32] Exos x10 sustainability =~ report. https://www.seagate.com/content/
dam/seagate/assets/esg/planet/product-sustainability/images/
exos-x10-10tb-sustainability-report-2022/files/exos-x10-10tb.pdf, 2022.

[33] Exos x18 sustainability — report. https://www.seagate.com/content/
dam/seagate/assets/esg/planet/product-sustainability/images/

exos-x18-sustainability-report/files/Exos-X18-18TB-Sustainability-Report-2023.
pdf, 2022.

[34] Our path to net zero. https://sustainability.fb.com/wp-content/uploads/2023/07/
Meta-2023-Path-to-Net-Zero.pdf, 2023.

[35] Heat assisted marnetic recording HAMR. https://www.seagate.com/innovation/hamr/,
2024.

[36] Google 2024 Environmental Report, 2024. URL https://www.gstatic.com/gumdrop/
sustainability/google-2024-environmental-report.pdf.

[37] 60tb hard drives arriving in 2028 according to industry roadmap — hdd capacity fore-
cast to double in four years. https://www.tomshardware.com/pc-components/storage/
60tb-hard-drives-arriving-in-2028-according-to-industry-roadmap-hdd-capacity-forecast-to-

2024.
[38] HDD User Benchmarks. http://hdd.userbenchmark.com/, (accessed July 5, 2023).

122

https://gulfnews.com/opinion/op-eds/sustainability-is-everyones-responsibility-1.1280327
https://gulfnews.com/opinion/op-eds/sustainability-is-everyones-responsibility-1.1280327
https://gulfnews.com/opinion/op-eds/sustainability-is-everyones-responsibility-1.1280327
https://gulfnews.com/opinion/op-eds/sustainability-is-everyones-responsibility-1.1280327
https://github.com/google/leveldb
https://makersite.io/makersite-ai-data-apps/
https://www.seagate.com/blog/ssd-over-provisioning-benefits-master-ti/
https://www.seagate.com/blog/ssd-over-provisioning-benefits-master-ti/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
http://rocksdb.org
https://www.tomshardware.com/pc-components/ssds/samsung-plans-big-capacity-jump-for-ssds-preps-290-layer-v-nand-this-year-430-layer-for-2025
https://www.tomshardware.com/pc-components/ssds/samsung-plans-big-capacity-jump-for-ssds-preps-290-layer-v-nand-this-year-430-layer-for-2025
https://www.seagate.com/www-content/datasheets/pdfs/skyhawk-3-5-hddDS1902-6-1710US-en_US.pdf
https://www.seagate.com/www-content/datasheets/pdfs/skyhawk-3-5-hddDS1902-6-1710US-en_US.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/exos-x-10DS1948-1-1709-GB-en_GB.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/exos-x-10DS1948-1-1709-GB-en_GB.pdf
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/exos-x18-channel-DS2045-4-2106US-en_US.pdf
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/exos-x18-channel-DS2045-4-2106US-en_US.pdf
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/exos-x18-channel-DS2045-4-2106US-en_US.pdf
https://www.micron.com/content/dam/micron/global/public/products/product-flyer/7450-nvme-ssd-product-brief.pdf
https://www.micron.com/content/dam/micron/global/public/products/product-flyer/7450-nvme-ssd-product-brief.pdf
https://www.seagate.com/content/dam/seagate/assets/esg/planet/product-sustainability/images/exos-x10-10tb-sustainability-report-2022/files/exos-x10-10tb.pdf
https://www.seagate.com/content/dam/seagate/assets/esg/planet/product-sustainability/images/exos-x10-10tb-sustainability-report-2022/files/exos-x10-10tb.pdf
https://www.seagate.com/content/dam/seagate/assets/esg/planet/product-sustainability/images/exos-x10-10tb-sustainability-report-2022/files/exos-x10-10tb.pdf
https://www.seagate.com/content/dam/seagate/assets/esg/planet/product-sustainability/images/exos-x18-sustainability-report/files/Exos-X18-18TB-Sustainability-Report-2023.pdf
https://www.seagate.com/content/dam/seagate/assets/esg/planet/product-sustainability/images/exos-x18-sustainability-report/files/Exos-X18-18TB-Sustainability-Report-2023.pdf
https://www.seagate.com/content/dam/seagate/assets/esg/planet/product-sustainability/images/exos-x18-sustainability-report/files/Exos-X18-18TB-Sustainability-Report-2023.pdf
https://www.seagate.com/content/dam/seagate/assets/esg/planet/product-sustainability/images/exos-x18-sustainability-report/files/Exos-X18-18TB-Sustainability-Report-2023.pdf
https://sustainability.fb.com/wp-content/uploads/2023/07/Meta-2023-Path-to-Net-Zero.pdf
https://sustainability.fb.com/wp-content/uploads/2023/07/Meta-2023-Path-to-Net-Zero.pdf
https://www.seagate.com/innovation/hamr/
https://www.gstatic.com/gumdrop/sustainability/google-2024-environmental-report.pdf
https://www.gstatic.com/gumdrop/sustainability/google-2024-environmental-report.pdf
https://www.tomshardware.com/pc-components/storage/60tb-hard-drives-arriving-in-2028-according-to-industry-roadmap-hdd-capacity-forecast-to-double-in-four-years
https://www.tomshardware.com/pc-components/storage/60tb-hard-drives-arriving-in-2028-according-to-industry-roadmap-hdd-capacity-forecast-to-double-in-four-years
http://hdd.userbenchmark.com/

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj Chakkar-
avarthy, David Brooks, and Carole-Jean Wu. Carbon Explorer: A Holistic Framework for
Designing Carbon Aware Datacenters. In International Conference on Architectural Support
for Programming Languages and Operating Systems, 2023.

Abutalib Aghayev, Mansour Shafaei, and Peter Desnoyers. Skylight—a window on shingled
disk operation. ACM Trans. Storage, 11(4), October 2015. ISSN 1553-3077. doi: 10.1145/
2821511. URL https://doi.org/10.1145/2821511.

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and
Rina Panigrahy. Design tradeoffs for ssd performance. In USENIX 2008 Annual Technical
Conference, ATC’08, page 57-70, USA, 2008. USENIX Association.

Parag Agrawal, Daniel Kifer, and Christopher Olston. Scheduling shared scans of large data
files. Proc. VLDB Endow., 1(1):958-969, August 2008. ISSN 2150-8097. doi: 10.14778/
1453856.1453960. URL https://doi.org/10.14778/1453856.1453960

Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. Principles of optimal page replace-
ment. J. ACM, 1971.

Michael Allison, Arun George, Javier Gonzalez, Dan Helmick, Vikash Kumar, Roshan R.
Nair, and Vivek Shah. Towards efficient flash caches with emerging nvme flexible data
placement ssds. In Proceedings of the Twentieth European Conference on Computer Sys-
tems, FKuroSys 25, page 1142-1160, New York, NY, USA, 2025. Association for Com-
puting Machinery. ISBN 9798400711961. doi: 10.1145/3689031.3696091. URL https:
//doi.org/10.1145/3689031.3696091.

Ahmed Amer, JoAnne Holliday, Darrell DE Long, Ethan L Miller, Jehan-Frangois Péris,
and Thomas Schwarz. Data management and layout for shingled magnetic recording. IEEE
Transactions on Magnetics, 47(10):3691-3697, 2011.

Hrishikesh Amur, James Cipar, Varun Gupta, Gregory R. Ganger, Michael A. Kozuch,
and Karsten Schwan. Robust and flexible power-proportional storage. In Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC ’10, page 217-228. Association for
Computing Machinery, 2010. doi: 10.1145/1807128.1807164. URL https://doi.org/10.
1145/1807128.1807164.

George Amvrosiadis, Angela Demke Brown, and Ashvin Goel. Opportunistic storage main-
tenance. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
'15, page 457473, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450338349. doi: 10.1145/2815400.2815424. URL https://doi.org/10.1145/2815400.
2815424,

Patrick Anderson, Erika Blancada Aranas, Youssef Assaf, Raphael Behrendt, Richard
Black, Marco Caballero, Pashmina Cameron, Burcu Canakci, Thales De Carvalho, An-
dromachi Chatzieleftheriou, Rebekah Storan Clarke, James Clegg, Daniel Cletheroe, Brid-
gette Cooper, Tim Deegan, Austin Donnelly, Rokas Drevinskas, Alexander Gaunt, Christos
Gkantsidis, Ariel Gomez Diaz, Istvan Haller, Freddie Hong, Teodora Ilieva, Shashidhar
Joshi, Russell Joyce, Mint Kunkel, David Lara, Sergey Legtchenko, Fanglin Linda Liu,
Bruno Magalhaes, Alana Marzoev, Marvin Mcnett, Jayashree Mohan, Michael Myrah,
Trong Nguyen, Sebastian Nowozin, Aaron Ogus, Hiske Overweg, Antony Rowstron, Ma-
neesh Sah, Masaaki Sakakura, Peter Scholtz, Nina Schreiner, Omer Sella, Adam Smith, Ioan
Stefanovici, David Sweeney, Benn Thomsen, Govert Verkes, Phil Wainman, Jonathan West-

123

https://doi.org/10.1145/2821511
https://doi.org/10.14778/1453856.1453960
https://doi.org/10.1145/3689031.3696091
https://doi.org/10.1145/3689031.3696091
https://doi.org/10.1145/1807128.1807164
https://doi.org/10.1145/1807128.1807164
https://doi.org/10.1145/2815400.2815424
https://doi.org/10.1145/2815400.2815424

cott, Luke Weston, Charles Whittaker, Pablo Wilke Berenguer, Hugh Williams, Thomas
Winkler, and Stefan Winzeck. Project silica: Towards sustainable cloud archival storage in
glass. In Proceedings of the 29th Symposium on Operating Systems Principles, SOSP 23,
2023.

[49] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Lakshmi N. Bairavasundaram, Tim-
othy E. Denehy, Florentina I. Popovici, Vijayan Prabhakaran, and Muthian Sivathanu.
Semantically-smart disk systems: past, present, and future. SIGMETRICS Perform. Ewval.
Rev., 33(4):29-35, March 2006. ISSN 0163-5999. doi: 10.1145/1138085.1138093. URL
https://doi.org/10.1145/1138085.1138093.

[50] Subi Arumugam, Alin Dobra, Christopher M. Jermaine, Niketan Pansare, and Luis Perez.
The datapath system: a data-centric analytic processing engine for large data warehouses.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, page 519-530, New York, NY, USA, 2010. Association for Computing
Machinery. ISBN 9781450300322. doi: 10.1145/1807167.1807224. URL https://doi.org/
10.1145/1807167.1807224.

[51] Desire Athow. Seagate launches biggest hard drive ever — 30tb exos
mozaic 3+ hdd can store more than 1,000 blu-ray movies and, yes, ev-
eryone will be able to buy them. https://www.techradar.com/pro/

seagate-launches-biggest-hard-drive-ever-30tb-exos-mozaic-3-hdd-can-store-more-than-1000-
2024.

[52] Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, and Myoungsoo Jung. What you can’t
forget: FExploiting parallelism for zoned namespaces. In Proceedings of the 14th ACM
Workshop on Hot Topics in Storage and File Systems, HotStorage 22, page 79-85, New
York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393997. doi:
10.1145/3538643.3539744. URL https://doi.org/10.1145/3538643.3539744,

[53] Shobana Balakrishnan, Richard Black, Austin Donnelly, Paul England, Adam Glass, Dave
Harper, Sergey Legtchenko, Aaron Ogus, Eric Peterson, and Antony Rowstron. Pelican: A
building block for exascale cold data storage. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 351-365, Broomfield, CO, October
2014. USENIX Association. ISBN 978-1-931971-16-4. URL https://www.usenix.org/

conference/osdil4/technical-sessions/presentation/balakrishnan.

[54] M Garcia Bardon, P Wuytens, L-A Ragnarsson, G Mirabelli, D Jang, G Willems, A Mallik,
A Spessot, J Ryckaert, and B Parvais. Dtco including sustainability: Power-performance-
area-cost-environmental score (ppace) analysis for logic technologies. In 2020 IEEE Inter-
national Electron Devices Meeting (IEDM), pages 41-4. IEEE, 2020.

[55] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin, Prashant Shenoy, Ramesh
Sitaraman, Abel Souza, and Adam Wierman. Enabling Sustainable Clouds: The Case for
Virtualizing the Energy System. In Symposium on Cloud Computing, 2021.

[56] Nathan Beckmann and Daniel Sanchez. Talus: A simple way to remove cliffs in cache
performance. In IEEE HPCA, 2015.

[57] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. Scaling distributed cache hierarchies
through computation and data co-scheduling. In IEEE HPCA, 2015.

[58] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. Lhd: Improving hit rate by maximizing

124

https://doi.org/10.1145/1138085.1138093
https://doi.org/10.1145/1807167.1807224
https://doi.org/10.1145/1807167.1807224
https://www.techradar.com/pro/seagate-launches-biggest-hard-drive-ever-30tb-exos-mozaic-3-hdd-can-store-more-than-1000-blu-ray-movies-and-yes-everyone-will-be-able-to-buy-them
https://www.techradar.com/pro/seagate-launches-biggest-hard-drive-ever-30tb-exos-mozaic-3-hdd-can-store-more-than-1000-blu-ray-movies-and-yes-everyone-will-be-able-to-buy-them
https://doi.org/10.1145/3538643.3539744
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/balakrishnan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/balakrishnan

[59]

[60]

[61]
[62]

[63]

|64]

[65]

[66]

[67]
[68]
[69]
[70]

[71]

[72]

hit density. In USENIX NSDI, 2018.

Michael A. Bender, Alex Conway, Martin Farach-Colton, William Jannen, Yizheng Jiao,
Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee, Prashant Pandey, Donald E.
Porter, Jun Yuan, and Yang Zhan. Small refinements to the dam can have big consequences
for data-structure design. In ACM SPAA, 2019.

Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy
Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and Gregory G.
Ganger. The CacheLib caching engine: Design and experiences at scale. In USENIX OSDI,
2020.

Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. Adaptsize: Orchestrating
the hot object memory cache in a content delivery network. In USENIX NSDI, 2017.

Daniel S. Berger, Nathan Beckmann, and Mor Harchol-Balter. Practical bounds on optimal
caching with variable object sizes. In ACM SIGMETRICS, 2018.

Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-Balter.
Robinhood: Tail latency aware caching—dynamic reallocation from cache-rich to cache-poor.
In USENIX OSDI, 2018.

Daniel S. Berger, Fiodar Kazhamiaka, Esha Choukse, Inigo Goiri, Celine Irvene, Pulkit A.
Misra, Alok Kumbhare, Rodrigo Fonseca, and Ricardo Bianchini. Research avenues towards
net-zero cloud platforms. Workshop on NetZero Carbon Computing, 2023.

Matias Bjgrling, Javier Gonzalez, and Philippe Bonnet. Lightnvm: The linux open-channel
ssd subsystem. In USENIX Conference on File and Storage Technologies, pages 359-374.
USENIX-The Advanced Computing Systems Association, 2017.

Matias Bjgrling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien Le Moal,
Gregory R. Ganger, and George Amvrosiadis. ZNS: Avoiding the block interface tax for
flash-based SSDs. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages
689-703. USENIX Association, July 2021. ISBN 978-1-939133-23-6. URL https://uww.

usenix.org/conference/atc21/presentation/bjorling.
g p J g

Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. Hyperbolic caching: Flexible
caching for web applications. In USENIX ATC., 2017.

Netflix Technology Blog. Application data caching using ssds. https://netflixtechblog.
com/application-data-caching-using-ssds-5bf25df851ef, 2016.

Netflix Technology Blog. Evolution of application data caching : From ram to ssd. https:
//bit.1ly/3rN73CI, 2018.

Simona Boboila and Peter Desnoyers. Write endurance in flash drives: Measurements and
analysis. In USENIX FAST, 2010.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding,
Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov,
Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani. Tao: Facebook’s distributed data
store for the social graph. In USENIX ATC, 2013.

Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy Zhu. Metastable
failures in distributed systems. In Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’21, page 221-227, New York, NY, USA, 2021. Association for Computing

125

https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://bit.ly/3rN73CI
https://bit.ly/3rN73CI

73]

[74]

[75]

[76]

7]

(78]

[79]

[30]

[81]

[82]

Machinery. ISBN 9781450384384. doi: 10.1145/3458336.3465286. URL https://doi.org/
10.1145/3458336.3465286.

Erik Brunvand, Donald Kline, and Alex K. Jones. Dark silicon considered harmful: A case

for truly green computing. In 2018 Ninth International Green and Sustainable Computing
Conference (IGSC), 2018.

Daniel Byrne, Nilufer Onder, and Zhenlin Wang. Faster slab reassignment in mem-
cached. In Proceedings of the International Symposium on Memory Systems, MEMSYS
19, page 353-362, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450372060. doi: 10.1145/3357526.3357562. URL https://doi.org/10.1145/3357526.
3357562.

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McK-
elvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas,
Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali,
Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali
Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran,
Kavitha Manivannan, and Leonidas Rigas. Windows azure storage: a highly available cloud
storage service with strong consistency. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP 11, page 143-157, New York, NY, USA, 2011. As-
sociation for Computing Machinery. ISBN 9781450309776. doi: 10.1145/2043556.2043571.
URL https://doi.org/10.1145/2043556.2043571.

Enrique V. Carrera, Eduardo Pinheiro, and Ricardo Bianchini. Conserving disk energy
in network servers. In Proceedings of the 17th Annual International Conference on Super-
computing, ICS 03, page 8697, New York, NY, USA, 2003. Association for Computing
Machinery. ISBN 1581137338. doi: 10.1145/782814.782829. URL https://doi.org/10.
1145/782814.782829.

Chandranil Chakraborttii and Heiner Litz. Reducing write amplification in flash by death-
time prediction of logical block addresses. In Proceedings of the 14th ACM International
Conference on Systems and Storage, pages 1-12, Haifa Israel, June 2021. ACM. ISBN
978-1-4503-8398-1. doi: 10.1145/3456727.3463784.

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski, James
Hunter, and Mike Barnett. Faster: an embedded concurrent key-value store for state man-
agement. VLDB, 2018.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer Systems (TOCS), 26
(2):1-26, 2008,

Andromachi Chatzieleftheriou, loan Stefanovici, Dushyanth Narayanan, Benn Thomsen,
and Antony Rowstron. Could cloud storage be disrupted in the next decade? In USENIX
HotStorage, 2020.

Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng Zhao.
Energy-Aware Server Provisioning and Load Dispatching for Connection-Intensive Internet
Services. In Symposium on Networked Systems Design and Implementation, 2008.

Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and David A Patterson.

126

https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1145/3357526.3357562
https://doi.org/10.1145/3357526.3357562
https://doi.org/10.1145/2043556.2043571
https://doi.org/10.1145/782814.782829
https://doi.org/10.1145/782814.782829

[83]

[84]

[85]

[36]

[87]

[38]

[89]

[90]

[91]

[92]

93]

[94]

[95]

[96]

Raid: High-performance, reliable secondary storage. ACM Computing Surveys (CSUR), 26
(2):145-185, 1994.

Shuang Chen, Christina Delimitrou, and José F Martinez. PARTIES: QoS-Aware Resource
Partitioning for Multiple Interactive Services. In International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019.

Mei-Ling Chiang, Paul CH Lee, and Ruei-Chuan Chang. Using data clustering to improve
cleaning performance for flash memory. Software: Practice and Experience, 29(3):267-290,
1999.

Gunhee Choi, Kwanghee Lee, Myunghoon Oh, Jongmoo Choi, Jhuyeong Jhin, and Yongseok
Oh. A new LSM-style garbage collection scheme for ZNS SSDs. In 12th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 20). USENIX Association, July
2020. URL https://www.usenix.org/conference/hotstorage20/presentation/choi.

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. Cliffhanger: Scaling
performance cliffs in web memory caches. In USENIX NSDI, 2016.

Asaf Cidon, Daniel Rushton, Stephen M Rumble, and Ryan Stutsman. Memshare: a dy-
namic multi-tenant key-value cache. In USENIX ATC, 2017.

Edward G. Coffman and Peter J. Denning. Operating Systems Theory. Prentice Hall Pro-
fessional Technical Reference, 1973. ISBN 0136378684.

D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage archives. In SC ’02:
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pages 47-47, 2002. doi:
10.1109/SC.2002.10058.

Diane Colombelli-Négrel, Mark E. Hauber, Jeremy Robertson, Frank J. Sulloway, Herbert
Hoi, Matteo Griggio, and Sonia Kleindorfer. Embryonic Learning of Vocal Passwords in
Superb Fairy-Wrens Reveals Intruder Cuckoo Nestlings. Current Biology, 22(22):2155-2160,
November 2012. ISSN 0960-9822. doi: 10.1016/j.cub.2012.09.025.

Amanda Peterson Corio. Five years of 100carbon-free future.
https://cloud.google.com /blog/topics/sustainability /5-years-of-100-percent-renewable-
energy.

Asit Dan and Don Towsley. An approximate analysis of the Iru and fifo buffer replacement
schemes. In ACM SIGMETRICS., 1990.

Carson Molder Sathya Gunasekar Jimmy Lu Snehal Khandkar Abhinav Sharma Daniel
S. Berger Nathan Beckmann Greg Ganger Daniel Lin-Kit Wong, Hao Wu. Baleen: MI
admission and prefetching for flash caches. In FAST, 2024.

Gary Davis. 2020: Life with 50 billion connected devices. In IEEE International Conference
on Consumer Electronics, pages 1-1, 2018.

Niv Dayan and Stratos Idreos. Dostoevsky: Better space-time trade-offs for lsm-tree
based key-value stores via adaptive removal of superfluous merging. In Proceedings of
the 2018 International Conference on Management of Data, SIGMOD ’18, 2018. doi:
10.1145/3183713.3196927.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal navigable key-value
store. In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, 2017. doi: 10.1145/3035918.3064054.

127

https://www.usenix.org/conference/hotstorage20/presentation/choi

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpystash: Ram space skimpy key-value
store on flash-based storage. In ACM SIGMOD, 2011.

Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware Scheduling for Heteroge-
neous Datacenters. In International Conference on Architectural Support for Programming
Languages and Operating Systems, 2013.

Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and QoS-Aware
Cluster Management. In International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2014.

Francis Deslauriers, Peter McCormick, George Amvrosiadis, Ashvin Goel, and An-
gela Demke Brown. Quartet: harmonizing task scheduling and caching for cluster com-
puting. In Proceedings of the 8th USENIX Conference on Hot Topics in Storage and File
Systems, HotStorage’16, page 1-5, USA, 2016. USENIX Association.

Peter Desnoyers. Analytic modeling of ssd write performance. In Proceedings of the 5th
Annual International Systems and Storage Conference, pages 1-10, 2012.

George Dickinson, Golam Mortuza, William Clay, Luca Piantanida, Christopher Green,
Chad Watson, Eric Hayden, Tim Andersen, Wan Kuang, Elton Graugnard, and William
Hughes. An alternative approach to nucleic acid memory. Nature Communications, 12, 04
2021. doi: 10.1038/s41467-021-22277-y.

Siying Dong, Shiva Shankar P, Satadru Pan, Anand Ananthabhotla, Dhanabal Ekambaram,
Abhinav Sharma, Shobhit Dayal, Nishant Vinaybhai Parikh, Yanqin Jin, Albert Kim, Sushil
Patil, Jay Zhuang, Sam Dunster, Akanksha Mahajan, Anirudh Chelluri, Chaitanya Datye,
Lucas Vasconcelos Santana, Nitin Garg, and Omkar Gawde. Disaggregating rocksdb: A
production experience. Proc. ACM Manag. Data, 2023. doi: 10.1145/3589772. URL https:
//doi.org/10.1145/3589772.

Lieven Eeckhout. Focal: A first-order carbon model to assess processor sustainability. In
Proceedings of the 29th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, pages 401-415, 2024.

Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman, Moham-
mad Alizadeh, and Sachin Katti. Flashield: a hybrid key-value cache that controls flash
write amplification. In USENIX NSDI, 2019.

J.G. Elerath. Afr: problems of definition, calculation and measurement in a commercial en-
vironment. In Annual Reliability and Maintainability Symposium. 2000 Proceedings. Inter-
national Symposium on Product Quality and Integrity (Cat. No.0OCH37055), pages 71-76,
2000. doi: 10.1109/RAMS.2000.816286.

J.G. Elerath. Specifying reliability in the disk drive industry: No more mtbf’s. In Annual
Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on
Product Quality and Integrity (Cat. No.00OCH37055), pages 194-199, 2000. doi: 10.1109/
RAMS.2000.816306.

Bin Fan, David G Andersen, and Michael Kaminsky. MemC3: Compact and concurrent
memcache with dumber caching and smarter hashing. In USENIX NSDI, 2013.

Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo
filter: Practically better than bloom. In Proceedings of the 10th ACM International on Con-
ference on Emerging Networking FExperiments and Technologies, CONEXT ’14, page 75-88,

128

https://doi.org/10.1145/3589772
https://doi.org/10.1145/3589772

[110]
[111]
[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450332798.
doi: 10.1145/2674005.2674994. URL https://doi.org/10.1145/2674005. 2674994,

Brad Fitzpatrick. Distributed caching with memcached. Linux journal, 2004(124):5, 2004.
Peter Freiling and Badrish Chandramouli. Microsoft. personal communication.

Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, Xin Peng, Wenli Zheng, and Minyi Guo.
QoS-Aware and Resource Efficient Microservice Deployment in Cloud-Edge Continuum. In
International Parallel and Distributed Processing Symposium, 2021.

Massimo Gallo, Bruno Kauffmann, Luca Muscariello, Alain Simonian, and Christian Tan-
guy. Performance evaluation of the random replacement policy for networks of caches.

SIGMETRICS Perform. Eval. Rev., 40(1):395-396, June 2012.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana
Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan
He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaru-
vinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou.
An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implica-
tions for Cloud & Edge Systems. In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage: Prac-
tical and Scalable ML-Driven Performance Debugging in Microservices. In International
Conference on Architectural Support for Programming Languages and Operating Systems,
2021.

Anshul Gandhi, Mor Harchol-Balter, and Michael A. Kozuch. The case for sleep states
in servers. In Proceedings of the 4th Workshop on Power-Aware Computing and Systems,
HotPower ’11, New York, NY, USA, 2011. Association for Computing Machinery. ISBN
9781450309813. doi: 10.1145/2039252.2039254. URL https://doi.org/10.1145/2039252.
2039254.

Jiechao Gao, Haoyu Wang, and Haiying Shen. Smartly Handling Renewable Energy Instabil-
ity in Supporting A Cloud Datacenter. In International Parallel and Distributed Processing
Symposium, 2020.

Alex Gartrell, Mohan Srinivasan, Bryan Alger, and Kumar Sundararajan. Mcdipper: A key-
value cache for flash storage. https://www.facebook.com/notes/facebook-engineering/
mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles, 2003.

Saugata Ghose, Abdullah Giray Yaglik¢i, Raghav Gupta, Donghyuk Lee, Kais Kudrolli,
William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal,
Mike O’Connor, and Onur Mutlu. What your dram power models are not telling you:
Lessons from a detailed experimental study. Proc. ACM Meas. Anal. Comput. Syst., 2(3),
dec 2018. doi: 10.1145/3224419. URL https://doi.org/10.1145/3224419.

Garth A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage. PhD thesis,
EECS Department, University of California, Berkeley, 12 1990. URL http://www.eecs.
berkeley.edu/Pubs/TechRpts/1990/6373.html.

Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-Yeon Wei,

129

https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2039252.2039254
https://doi.org/10.1145/2039252.2039254
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://doi.org/10.1145/3224419
http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/6373.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/6373.html

[123]

[124]

[125]

[126]

[127]
[128]

[129]

[130]

[131]

[132]

David Brooks, and Carole-Jean Wu. Chasing carbon: The elusive environmental footprint
of computing. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 854-867. IEEE, 2021.

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks,
and Carole-Jean Wu. ACT: designing sustainable computer systems with an architectural
carbon modeling tool. In Proceedings of the 49th Annual International Symposium on Com-
puter Architecture. ACM, 2022.

Mingzhe Hao, Levent Toksoz, Nanqingin Li, Edward Edberg Halim, Henry Hoffmann, and
Haryadi S. Gunawi. LinnOS: Predictability on unpredictable flash storage with a light neural
network. In 1/th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20), pages 173-190. USENIX Association, November 2020. ISBN 978-1-939133-19-9.
URL https://www.usenix.org/conference/osdi20/presentation/hao.

Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. The
unwritten contract of solid state drives. In ACM FuroSys, 2017.

Bruce Hoch and Sage Shih. Open Cloud Server - Project Olympus
JBOD. http://files.opencompute.org/oc/public.php?service=files&t=
eaBaf1772e9eea08a0fc0f8e1691418b, 2017.

Amy Hood, July 2022.

Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen Ding, Song Jiang, and
Zhenlin Wang. LAMA: Optimized locality-aware memory allocation for key-value cache. In
2015 USENIX Annual Technical Conference (USENIX ATC 15), pages 5769, Santa Clara,
CA, July 2015. USENIX Association. ISBN 978-1-931971-225. URL https://wuw.usenix.

org/conference/atcl5/technical-session/presentation/hu.

Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sengupta, Bikash
Sharma, and Moinuddin K. Qureshi. FlashBlox: Achieving both performance isolation and
uniform lifetime for virtualized SSDs. In 15th USENIX Conference on File and Storage
Technologies (FAST 17), pages 375-390, Santa Clara, CA, February 2017. USENIX As-
sociation. ISBN 978-1-931971-36-2. URL https://www.usenix.org/conference/fast17/
technical-sessions/presentation/huang.

Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikrishna, Salman Estyak,
Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko. Metastable fail-
ures in the wild. In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 73-90, Carlsbad, CA, July 2022. USENIX Association. ISBN
978-1-939133-28-1. URL https://www.usenix.org/conference/osdi22/presentation/
huang-lexiang.

Jiao Hui, Xiongzi Ge, Xiaoxia Huang, Yi Liu, and Qiangjun Ran. E-hash: an energy-efficient
hybrid storage system composed of one ssd and multiple hdds. In Proceedings of the Third
International Conference on Advances in Swarm Intelligence - Volume Part II, ICSI’12,
page 527-534, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 9783642310195. doi: 10.
1007/978-3-642-31020-1_63. URL https://doi.org/10.1007/978-3-642-31020-1_63.

llias Iliadis, Robert Haas, Xiao-Yu Hu, and Evangelos Eleftheriou. Disk scrubbing ver-
sus intra-disk redundancy for high-reliability raid storage systems. ACM SIGMETRICS
Performance Evaluation Review, 36(1):241-252, 2008.

130

https://www.usenix.org/conference/osdi20/presentation/hao
http://files.opencompute.org/oc/public.php?service=files&t=ea8af1772e9eea08a0fc0f8e1691418b
http://files.opencompute.org/oc/public.php?service=files&t=ea8af1772e9eea08a0fc0f8e1691418b
https://www.usenix.org/conference/atc15/technical-session/presentation/hu
https://www.usenix.org/conference/atc15/technical-session/presentation/hu
https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang
https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://doi.org/10.1007/978-3-642-31020-1_63

[133]
[134]

[135]

[136]

[137]

[138]

[139]

[140]
[141]

[142]

[143]

[144]

[145]

[146]

Aamer Jaleel, Kevin Theobald, Simon Steely Jr, and Joel Emer. High performance cache
replacement using re-reference interval prediction. In ISCA-37, 2010.

Jaeheon Jeong and Michel Dubois. Cache replacement algorithms with nonuniform miss
costs. IEEE Transactions on Computers, 55(4):353-365, 2006.

Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and Scalable Serverless Computing
for Latency-Sensitive, Interactive Microservices. In International Conference on Architec-
tural Support for Programming Languages and Operating Systems, 2021.

Brad Johns. Reducing data center energy consumption and carbon emissions with mod-
ern tape storage. https://datastorage-na.fujifilm.com/wp-content/themes/fuji/
images/sustainability/BJC-Reducing-Carbon-Emission-Whitepaper-LR-1120.pdf,
2020.

Theodore Johnson and Dennis Shasha. 2q: A low overhead high performance buffer man-
agement replacement algorithm. In Proceedings of the 20th International Conference on
Very Large Data Bases, VLDB ’94, page 439-450, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc. ISBN 1558601538.

Nicola Jones et al. How to stop data centres from gobbling up the world’s electricity. Nature,
561(7722):163-166, 2018.

Lucas Joppa. Made to measure: Sustainability commitment progress and
updates. https://blogs.microsoft.com/blog/2021/07/14 /made-to-measure-sustainability-
commitment-progress-and-updates) .

Ajay Joshi. Cachelib on zns. https://github.com/ajaysjoshi/CachelLib-zns, 2022.

E. G. Coffman Jr and Predrag Jelenkovié¢. Performance of the move-to-front algorithm with
markov-modulated request sequences. Oper. Res. Lett., 25(3):109-118, October 1999.

Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger. Cluster storage systems gotta
have HeART: improving storage efficiency by exploiting disk-reliability heterogeneity. 2019.

Saurabh Kadekodi, K. V. Rashmi, and Gregory R. Ganger. Cluster storage systems gotta
have HeART: improving storage efficiency by exploiting disk-reliability heterogeneity. In
17th USENIX Conference on File and Storage Technologies (FAST 19), pages 345-358,
Boston, MA, February 2019. USENIX Association. ISBN 978-1-939133-09-0. URL https:

//www.usenix.org/conference/fast19/presentation/kadekodi.

Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, Juncheng Yang,
KV Rashmi, and Gregory Ganger. Pacemaker: Avoiding heart attacks in storage clus-
ters with disk-adaptive redundancy. In Proceedings of the 14th USENIX Symposium on
Operating Systems Design and Implementation, 2020.

Saurabh Kadekodi, Francisco Maturana, Sanjith Athlur, Arif Merchant, K. V. Rashmi, and
Gregory R. Ganger. Tiger: Disk-Adaptive redundancy without placement restrictions. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22),
pages 413-429, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-28-1.
URL https://wuw.usenix.org/conference/osdi22/presentation/kadekodi.

Saurabh Kadekodi, Shashwat Silas, David Clausen, and Arif Merchant. Practical design
considerations for wide locally recoverable codes (LRCs). In 21st USENIX Conference
on File and Storage Technologies (FAST 23), pages 1-16, Santa Clara, CA, February
2023. USENIX Association. ISBN 978-1-939133-32-8. URL https://www.usenix.org/

131

https://datastorage-na.fujifilm.com/wp-content/themes/fuji/images/sustainability/BJC-Reducing-Carbon-Emission-Whitepaper-LR-1120.pdf
https://datastorage-na.fujifilm.com/wp-content/themes/fuji/images/sustainability/BJC-Reducing-Carbon-Emission-Whitepaper-LR-1120.pdf
https://github.com/ajaysjoshi/CacheLib-zns
https://www.usenix.org/conference/fast19/presentation/kadekodi
https://www.usenix.org/conference/fast19/presentation/kadekodi
https://www.usenix.org/conference/osdi22/presentation/kadekodi
https://www.usenix.org/conference/fast23/presentation/kadekodi
https://www.usenix.org/conference/fast23/presentation/kadekodi
https://www.usenix.org/conference/fast23/presentation/kadekodi

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]
[156]

[157]

[158]

conference/fast23/presentation/kadekodi.

Rainer W. Kaese. From 20 megabytes to 20 terabytes: 40 years of hard disk
drive technology. https://www.toshiba-storage.com/wp-content/uploads/2023/02/
Toshiba_40years_HDD_technology_screen.pdf, 2022.

Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. The multi-streamed
solid-state drive. In 6th { USENIX} Workshop on Hot Topics in Storage and File Systems
(HotStorage 14), 2014.

Supriya C. Karekar and Birgitte K. Ahring. Reducing methane production from ru-
men cultures by bioaugmentation with homoacetogenic bacteria. Biocatalysis and Agri-
cultural Biotechnology, 47:102526, 2023. ISSN 1878-8181. doi: https://doi.org/10.
1016/j.bcab.2022.102526. URL https://www.sciencedirect.com/science/article/pii/
S51878818122002535.

William Katsak, Ifiigo Goiri, Ricardo Bianchini, and Thu D. Nguyen. Greencassandra: Using
renewable energy in distributed structured storage systems. In 2015 Sixth International
Green and Sustainable Computing Conference (IGSC), pages 1-8, 2015. doi: 10.1109/
IGCC.2015.7393711.

Rini T. Kaushik and Milind Bhandarkar. Greenhdfs: towards an energy-conserving, storage-
efficient, hybrid hadoop compute cluster. In Proceedings of the 2010 International Confer-
ence on Power Aware Computing and Systems, HotPower’10, page 1-9, USA, 2010. USENIX
Association.

Richard E. Kessler, Mark D Hill, and David A Wood. A comparison of trace-sampling
techniques for multi-megabyte caches. IEEE Transactions on Computers, 43(6):664-675,
1994.

Taejin Kim, Duwon Hong, Sangwook Shane Hahn, Myoungjun Chun, Sungjin Lee, Jooy-
oung Hwang, Jongyoul Lee, and Jihong Kim. Fully automatic stream management for
Multi-Streamed SSDs using program contexts. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 295-308, Boston, MA, February 2019. USENIX As-
sociation. ISBN 978-1-939133-09-0. URL https://www.usenix.org/conference/fast19/
presentation/kim-taejin.

Timothy Kim, Sanjith Athlur, Saurabh Kadekodi, Francisco Maturana, Dax Delvira, Arif
Merchant, Gregory R. Ganger, and K. V. Rashmi. Morph: Efficient file-lifetime redundancy
management for cluster file systems. In Proceedings of the ACM SIGOPS 30th Symposium
on Operating Systems Principles, SOSP 24, page 330-346, New York, NY, USA, 2024. As-
sociation for Computing Machinery. ISBN 9798400712517. doi: 10.1145/3694715.3695981.
URL https://doi.org/10.1145/3694715.3695981.

Bran Knowles. Acm techbrief: Computing and climate change, 2021.

Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2fs: A new file system
for flash storage. In USENIX FAST, 2015.

Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. Kvell: The design and
implementation of a fast persistent key-value store. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP ’19, 2019. doi: 10.1145/3341301.3359628.

Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and Grant Wallace.
Nitro: A Capacity-Optimized SSD cache for primary storage. In 2014 USENIX Annual

132

https://www.usenix.org/conference/fast23/presentation/kadekodi
https://www.usenix.org/conference/fast23/presentation/kadekodi
https://www.usenix.org/conference/fast23/presentation/kadekodi
https://www.usenix.org/conference/fast23/presentation/kadekodi
https://www.toshiba-storage.com/wp-content/uploads/2023/02/Toshiba_40years_HDD_technology_screen.pdf
https://www.toshiba-storage.com/wp-content/uploads/2023/02/Toshiba_40years_HDD_technology_screen.pdf
https://www.sciencedirect.com/science/article/pii/S1878818122002535
https://www.sciencedirect.com/science/article/pii/S1878818122002535
https://www.usenix.org/conference/fast19/presentation/kim-taejin
https://www.usenix.org/conference/fast19/presentation/kim-taejin
https://doi.org/10.1145/3694715.3695981

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]
[167]

[168]

[169]

Technical Conference (USENIX ATC 14), 2014.

Cheng Li, Philip Shilane, Fred Douglis, and Grant Wallace. Pannier: Design and analysis
of a container-based flash cache for compound objects. ACM Transactions on Storage, 13
(3):24, 2017.

Conglong Li, David G Andersen, Qiang Fu, Sameh Elnikety, and Yuxiong He. Workload
analysis and caching strategies for search advertising systems. In ACM SoCC, 2017.

Conglong Li, David G Andersen, Qiang Fu, Sameh Elnikety, and Yuxiong He. Better caching
in search advertising systems with rapid refresh predictions. In WWW., pages 18751884,
2018.

Daping Li, Xiaoyang Qu, Jiguang Wan, Jun Wang, Yang Xia, Xiaozhao Zhuang, and Chang-
sheng Xie. Workload scheduling for massive storage systems with arbitrary renewable sup-
ply. IEEE Transactions on Parallel and Distributed Systems, 29(10):2373-2387, 2018. doi:
10.1109/TPDS.2018.2820070.

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko No-
vakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill, Marcus
Fontoura, and Ricardo Bianchini. Pond: Cxl-based memory pooling systems for cloud plat-
forms. In Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, page 574-587,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399166.
doi: 10.1145/3575693.3578835. URL https://doi.org/10.1145/3575693.3578835.

Qiang Li, Qiao Xiang, Yuxin Wang, Haohao Song, Ridi Wen, Wenhui Yao, Yuanyuan Dong,
Shuqi Zhao, Shuo Huang, Zhaosheng Zhu, Huayong Wang, Shanyang Liu, Lulu Chen, Zhiwu
Wu, Haonan Qiu, Derui Liu, Gexiao Tian, Chao Han, Shaozong Liu, Yaohui Wu, Zicheng
Luo, Yuchao Shao, Junping Wu, Zheng Cao, Zhongjie Wu, Jiaji Zhu, Jinbo Wu, Jiwu Shu,
and Jiesheng Wu. More than capacity: Performance-oriented evolution of pangu in alibaba.
In 21st USENIX Conference on File and Storage Technologies (FAST 23), pages 331-346,
Santa Clara, CA, February 2023. USENIX Association. ISBN 978-1-939133-32-8. URL
https://www.usenix.org/conference/fast23/presentation/li-qiang-deployed.

Xin Li, Greg Thompson, and Joseph Beer. How amazon achieves near-real-
time renewable energy plant monitoring to optimize performance using aws.
https://aws.amazon.com/blogs/industries/amazon-achieves-near-real-time-renewable-
energy-plant-monitoring-to-optimize-performance-using-aws/ .

Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. Silt: A memory-
efficient, high-performance key-value store. In ACM SOSP, 2011.

Jian Liu, Kefei Wang, and Feng Chen. Tscache: An efficient flash-based caching scheme for
time-series data workloads. 2021.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Wisckey: Separating keys from values in ssd-conscious storage.
In USENIX FAST, 2016.

Christopher R. Lumb, Jiri Schindler, Gregory R. Ganger, and David F. Nagle. Towards
hiugher disk head utilization: Extracting free bandwidth from busy disk drives. In Proceed-

ings of the 4th Symposium on Operating Systems Design and Implementation, OSDI *00,
USA, 2000. USENIX Association.

133

https://doi.org/10.1145/3575693.3578835
https://www.usenix.org/conference/fast23/presentation/li-qiang-deployed

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding,
Jian He, and Chengzhong Xu. Characterizing Microservice Dependency and Performance:
Alibaba Trace Analysis. In Symposium on Cloud Computing, 2021.

Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Jian He, Guodong Yang,
and Chengzhong Xu. Erms: Efficient Resource Management for Shared Microservices with
SLA Guarantees. In International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022.

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. Improving 3d
nand flash memory lifetime by tolerating early retention loss and process variation. Proc.
ACM Meas. Anal. Comput. Syst., 2(3), dec 2018. doi: 10.1145/3224432. URL https:
//doi.org/10.1145/3224432.

Jialun Lyu, Jaylen Wang, Kali Frost, Chaojie Zhang, Celine Irvene, Esha Choukse,
Rodrigo Fonseca, Ricardo Bianchini, Fiodar Kazhamiaka, and Daniel S. Berger.
Myths and misconceptions around reducing carbon embedded in cloud plat-
forms. In 2nd Workshop on Sustainable Computer Systems (HotCarbon23). ACM,
July 2023. URL https://www.microsoft.com/en-us/research/publication/
myths-and-misconceptions-around-reducing-carbon-embedded-in-cloud-platforms/.

Jialun Lyu, Marisa You, Celine Irvene, Mark Jung, Tyler Narmore, Jacob Shapiro, Luke
Marshall, Savyasachi Samal, Ioannis Manousakis, Lisa Hsu, et al. Hyrax:{Fail-in-Place}
server operation in cloud platforms. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), pages 287-304, 2023.

Mike Mammarella, Shant Hovsepian, and Eddie Kohler. Modular data storage with anvil.
In ACM SOSP, 2009.

Bill Martin, Yoni Shternhell, Mike James, Yeong-Jaec Woo, Hyunmo Kang, Anu Murthy,
Erich Haratsch, Kwok Kong, Andres Baez, Santosh Kumar, and et al. Nvm express technical
proposal 4146 flexible data placement, Nov 2022.

Sara McAllister, Yucong "Sherry" Wang, Benjamin Berg, Daniel S. Berger, George
Amvrosiadis, Nathan Beckmann, and Gregory R. Ganger. Fairy WREN: A sustainable cache
for emerging Write-Read-Erase flash interfaces. mar .

Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya Gu-
nasekar, Jimmy Lu, Daniel S. Berger, Nathan Beckmann, and Gregory R. Ganger. Kanga-
roo: Caching billions of tiny objects on flash. In ACM SOSP, 2021.

Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya Gu-
nasekar, Jimmy Lu, Daniel S. Berger, Nathan Beckmann, and Gregory R. Ganger. Kanga-
roo: Theory and practice of caching billions of tiny objects on flash. ACM Transactions on
Storage, 2022.

Sara McAllister, Fiodar Kazhamiaka, Daniel S Berger, Rodrigo Fonseca, Kali Frost, Aaron
Ogus, Maneesh Sah, Ricardo Bianchini, George Amvrosiadis, Nathan Beckmann, et al. A
call for research on storage emissions. In HotCarbon Workshop on Sustainable Computer
Systems 2024, 2024.

Sara McAllister, Yucong "Sherry" Wang, Benjamin Berg, Daniel S. Berger, George
Amvrosiadis, Nathan Beckmann, and Gregory R. Ganger. Fairy WREN: A sustainable cache
for emerging Write-Read-Erase flash interfaces. In 18th USENIX Symposium on Operating

134

https://doi.org/10.1145/3224432
https://doi.org/10.1145/3224432
https://www.microsoft.com/en-us/research/publication/myths-and-misconceptions-around-reducing-carbon-embedded-in-cloud-platforms/
https://www.microsoft.com/en-us/research/publication/myths-and-misconceptions-around-reducing-carbon-embedded-in-cloud-platforms/

Systems Design and Implementation (OSDI 24), 2024.

[182] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind Krishnamurthy. eZNS: An elas-
tic zoned namespace for commodity ZNS SSDs. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23), pages 461-477, Boston, MA, July
2023. USENIX Association. ISBN 978-1-939133-34-2. URL https://www.usenix.org/
conference/osdi23/presentation/min.

[183] Amirhossein Mirhosseini, Sameh Elnikety, and Thomas F Wenisch. Parslo: A Gradient
Descent-based Approach for Near-optimal Partial SLO Allotment in Microservices. In Sym-
posium on Cloud Computing, 2021.

[184] Christian Monzio Compagnoni, Akira Goda, Alessandro S. Spinelli, Peter Feeley, Andrea L.

Lacaita, and Angelo Visconti. Reviewing the evolution of the nand flash technology. Pro-
ceedings of the IEEE, 105(9):1609-1633, 2017. doi: 10.1109/JPROC.2017.2665781.

[185] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Whirlpool: Improving dynamic
cache management with static data classification. In ASPLOS, 2016.

[186] Melanie Nakagawa. On the road to 2030: Our 2022 environmental sustain-
ability report. https://blogs.microsoft.com/on-the-issues/2023/05/10/
2022-environmental-sustainability-report/, 2022.

[187] PBS Nature. Kangaroo fact sheet. https://www.pbs.org/wnet/nature/
kangaroo-mob-kangaroo-fact-sheet/7444/7repeat=w3tc.

[188] Bichlien Nguyen, Julie Sinistore, Jake Smith, Praneet S. Arshi, Lauren M.
Johnson, Tim Kidman, T.J. diCaprio, Doug Carmean, and Karin Strauss.

Architecting datacenters for sustainability: Greener data storage using syn-
thetic dna. In FElectronics Goes Green 2020. Fraunhofer 1ZM, IEEE, Septem-
ber 2020. URL https://www.microsoft.com/en-us/research/publication/

architecting-datacenters-for-sustainability-greener-data-storage-using-synthetic-dna/.

[189] Council of the European Union. Fit for 55. https://www.consilium.europa.eu/en/
policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/, 2024.

[190] Alina Oprea and Ari Juels. A Clean-Slate Look at Disk Scrubbing. 2010.

[191] James O’Toole and Liuba Shrira. Opportunistic log: Efficient installation reads in a reliable
storage server. In USENIX OSDI, 1994.

[192] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng Wang.
Sdf: Software-defined flash for web-scale internet storage systems. In ASPLOS, 2014.

[193] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal bloom filter replacement.
In Proceedings of the Sizteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 05, page 823-829, USA, 2005. Society for Industrial and Applied Mathematics.
ISBN 0898715857.

[194] Satadru Pan, Theano Stavrinos, Yunqgiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav
Sharma, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei Cao, et al. Face-
book’s tectonic filesystem: Efficiency from exascale. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 217-231, 2021.

[195] Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton, and
Rob Johnson. Vector quotient filters: Overcoming the time/space trade-off in filter design.

135

https://www.usenix.org/conference/osdi23/presentation/min
https://www.usenix.org/conference/osdi23/presentation/min
https://blogs.microsoft.com/on-the-issues/2023/05/10/2022-environmental-sustainability-report/
https://blogs.microsoft.com/on-the-issues/2023/05/10/2022-environmental-sustainability-report/
https://www.pbs.org/wnet/nature/kangaroo-mob-kangaroo-fact-sheet/7444/?repeat=w3tc
https://www.pbs.org/wnet/nature/kangaroo-mob-kangaroo-fact-sheet/7444/?repeat=w3tc
https://www.microsoft.com/en-us/research/publication/architecting-datacenters-for-sustainability-greener-data-storage-using-synthetic-dna/
https://www.microsoft.com/en-us/research/publication/architecting-datacenters-for-sustainability-greener-data-storage-using-synthetic-dna/
https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/

In Proceedings of the 2021 International Conference on Management of Data, SIGMOD 21,
page 1386-1399, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383431. doi: 10.1145/3448016.3452841. URL https://doi.org/10.1145/3448016.
3452841.

[196] David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[197] Ramtin Pedarsani, Mohammad Ali Maddah-Ali, and Urs Niesen. Online coded caching.
IEEE/ACM Transactions on Networking, 2016.

[198] Sara Perez. Twitter’s doubling of character count from 140 to 280 had little impact
on length of tweets. Tech Crunch, 2018. URL https://techcrunch.com/2018/10/30/
twitters-doubling-of-character-count-from-140-to-280-had-1little-impact-on-length-of-tweet

[199] Phitchaya Mangpo Phothilimthana, Saurabh Kadekodi, Soroush Ghodrati, Selene Moon,
and Martin Maas. Thesios: Synthesizing accurate counterfactual i/o traces from i/o sam-
ples. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS 24, page 1016-1032,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703867.
doi: 10.1145/3620666.3651337. URL https://doi.org/10.1145/3620666.3651337.

[200] Eduardo Pinheiro and Ricardo Bianchini. Energy conservation techniques for disk array-
based servers. In Proceedings of the 18th Annual International Conference on Supercomput-
ing, ICS 04, page 6878, New York, NY, USA, 2004. Association for Computing Machin-
ery. ISBN 1581138393. doi: 10.1145/1006209.1006220. URL https://doi.org/10.1145/
1006209.1006220.

[201] Eduardo Pinheiro, Ricardo Bianchini, and Cezary Dubnicki. Exploiting redundancy to
conserve energy in storage systems. In Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’06 /Performance *06, page
15-26, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933190.
doi: 10.1145/1140277.1140281. URL https://doi.org/10.1145/1140277.1140281.

[202] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure Trends in a Large
Disk Drive Population. In Conference on File and Storage Technologies, 2007.

[203] Francisco Pires. Solidigm introduces industry-first plc nand for higher storage densities.
https://www.tomshardware.com/news/solidigm-plc-nand-ssd, 2022.

[204] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Ravishankar K
Iyer. FIRM: An Intelligent Fine-grained Resource Management Framework for SLO-
Oriented Microservices. In Symposium on Operating Systems Design and Implementation,
2020.

[205] Xiaoyang Qu, Jiguang Wan, Jun Wang, Ligiong Liu, Dan Luo, and Changsheng Xie. Green-
match: Renewable-aware workload scheduling for massive storage systems. In 2016 IFEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 403-412, 2016.
doi: 10.1109/TPDPS.2016.24.

[206] Martin Raab and Angelika Steger. Balls into Bins: A Simple and Tight Analysis. In Gerhard
Goos, Juris Hartmanis, Jan van Leeuwen, Michael Luby, JosA(©) D. P. Rolim, and Maria

Serna, editors, Randomization and Approximation Techniques in Computer Science, volume
1518, pages 159-170. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. ISBN 978-3-540-

136

https://doi.org/10.1145/3448016.3452841
https://doi.org/10.1145/3448016.3452841
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/
https://doi.org/10.1145/3620666.3651337
https://doi.org/10.1145/1006209.1006220
https://doi.org/10.1145/1006209.1006220
https://doi.org/10.1145/1140277.1140281
https://www.tomshardware.com/news/solidigm-plc-nand-ssd

207]

208

[209]

[210]
[211]

[212]

[213]

[214]

[215]

[216]

[217]
[218]

[219]

65142-0 978-3-540-49543-7. doi: 10.1007/3-540-49543-6 13. URL http://link.springer.
com/10.1007/3-540-49543-6_13. Series Title: Lecture Notes in Computer Science.

Ana Radovanovi¢, Ross Koningstein, lan Schneider, Bokan Chen, Alexandre Duarte, Binz
Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, and Nick Care. Carbon-Aware Computing
for Datacenters. Transactions on Power Systems, 38:1270-1280, 2022.

Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. Pebblesdb:
Building key-value stores using fragmented log-structured merge trees. In ACM SOSP,
2017.

Varsha Rao and Andrew A. Chien. Understanding the operational carbon footprint of
storage reliability and management. SIGENERGY Energy Inform. Rev., 4(5):180-187, April
2025. doi: 10.1145/3727200.3727227. URL https://doi.org/10.1145/3727200.3727227.

Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-
structured file system. In ACM SOSP, 1991.

Elisha J. Rosensweig, Jim Kurose, and Don Towsley. Approximate models for general cache
networks. In IEEE INFOCOM, 2010.

Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. Log-structured memory for
DRAM-based storage. In 12th USENIX Conference on File and Storage Technologies (FAST
14), pages 1-16, Santa Clara, CA, February 2014. USENIX Association. ISBN ISBN 978-1-
931971-08-9. URL https://www.usenix.org/conference/fast14/technical-sessions/
presentation/rumble.

Sheraz Sadiq. How kangaroo gut bacteria could help cut a potent source of greenhouse gas
emissions. https://www.pbs.org/wnet/nature/kangaroo-mob-kangaroo-fact-sheet/
7444 /7repeat=w3tc, 2023.

Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you? In 5th USENIX Con-
ference on File and Storage Technologies (FAST 07), San Jose, CA, February
2007. USENIX Association. URL https://www.usenix.org/conference/fast-07/
disk-failures-real-world-what-does-mttf-1000000-hours-mean-you.

Thomas JE Schwarz, Qin Xin, Ethan L Miller, Darrell DE Long, Andy Hospodor, and
Spencer Ng. Disk scrubbing in large archival storage systems. In The IEEE Computer
Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, 2004.(MASCOTS 2004). Proceedings., pages
409-418. IEEE, 2004.

T.J.E. Schwarz, Qin Xin, E.L. Miller, D.D.E. Long, A. Hospodor, and S. Ng. Disk scrubbing
in large archival storage systems. In The IEEE Computer Society’s 12th Annual Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cations Systems, 2004. (MASCOTS 2004). Proceedings., pages 409-418, 2004.

Rathijit Sen and David A. Wood. Reuse-based online models for caches. In ACM SIGMET-
RICS., 2013.

Mark A. Shaw. Project Olympus Flash Expansion FX-16. http://files.opencompute.
org/oc/public.php?service=files&t=14ab3cf25170b7a0a439e11a3d818c96, 2017.

Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. Optimizing flash-based key-value
cache systems. In USENIX HotStorage, 2016.

137

http://link.springer.com/10.1007/3-540-49543-6_13
http://link.springer.com/10.1007/3-540-49543-6_13
https://doi.org/10.1145/3727200.3727227
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://www.pbs.org/wnet/nature/kangaroo-mob-kangaroo-fact-sheet/7444/?repeat=w3tc
https://www.pbs.org/wnet/nature/kangaroo-mob-kangaroo-fact-sheet/7444/?repeat=w3tc
https://www.usenix.org/conference/fast-07/disk-failures-real-world-what-does-mttf-1000000-hours-mean-you
https://www.usenix.org/conference/fast-07/disk-failures-real-world-what-does-mttf-1000000-hours-mean-you
http://files.opencompute.org/oc/public.php?service=files&t=14ab3cf25170b7a0a439e11a3d818c96
http://files.opencompute.org/oc/public.php?service=files&t=14ab3cf25170b7a0a439e11a3d818c96

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. Didacache: an integration of device
and application for flash-based key-value caching. ACM Transactions on Storage (TOS), 14
(3):1-32, 2018.

Anton Shilov. Seagate’s HAMR Update: 32 TB in Early 2024,

404+ TB Two Years Later. https://www.anandtech.com/show/21125/
seagates-hamr-update-32-tb-in-early-2024-40-tb-two-years-later, 2023.

Shigeru Shiratake. Scaling and performance challenges of future dram. In 2020 IEEE
International Memory Workshop (IMW), pages 1-3, 2020. doi: 10.1109/IMW48823.2020.
9108122.

Junaid Shuja, Kashif Bilal, Sajjad A. Madani, Mazliza Othman, Rajiv Ranjan, Pavan Balaji,
and Samee U. Khan. Survey of Techniques and Architectures for Designing Energy-Efficient
Data Centers. IEEE Systems Journal, 10:507-519, 2016.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. In 2010 IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1-10, 2010. doi: 10.1109/MSST.2010.5496972.

Michael Sindelar, Ramesh K. Sitaraman, and Prashant Shenoy. Sharing-aware algorithms
for virtual machine colocation. In Proceedings of the Twenty-Third Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’11, page 367-378, New York, NY,
USA, 2011. Association for Computing Machinery. ISBN 9781450307437. doi: 10.1145/
1989493.1989554. URL https://doi.org/10.1145/1989493.1989554.

Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-smart disk systems.
In Proceedings of the 2nd USENIX Conference on File and Storage Technologies, FAST 03,
page 73-88, USA, 2003. USENIX Association.

Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Database-aware semantically-smart storage. In Proceedings of
the 4th Conference on USENIX Conference on File and Storage Technologies - Volume 4,
FAST’05, page 18, USA, 2005. USENIX Association.

Minseok Song, Yeongju Lee, and Euiseok Kim. Saving disk energy in video servers by
combining caching and prefetching. ACM Trans. Multimedia Comput. Commun. Appl., 10
(1s), jan 2014. ISSN 1551-6857. doi: 10.1145/2537856. URL https://doi.org/10.1145/
2537856.

Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd. Learning relaxed belady for content
distribution network caching. In USENIX NSDI, 2020.

Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, and
Prashant Shenoy. Ecovisor: A Virtual Energy System for Carbon-Efficient Applications. In
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, 2023.

Akshitha Sriraman and Thomas F Wenisch. pTune: Auto-Tuned Threading for OLDI
Microservices. In Conference on Operating Systems Design and Implementation, 2018.

Louise Story. Anywhere the eye can see, it’s likely to see an ad. The New York
Times, 15(1), 2007. Available at https://www.nytimes.com/2007/01/15/business/
media/15everywhere.html, 9/6,/2020.

138

https://www.anandtech.com/show/21125/seagates-hamr-update-32-tb-in-early-2024-40-tb-two-years-later
https://www.anandtech.com/show/21125/seagates-hamr-update-32-tb-in-early-2024-40-tb-two-years-later
https://doi.org/10.1145/1989493.1989554
https://doi.org/10.1145/2537856
https://doi.org/10.1145/2537856
https://www.nytimes.com/2007/01/15/business/media/15everywhere.html
https://www.nytimes.com/2007/01/15/business/media/15everywhere.html

[233]

[234]
[235]

236

[237]
238

[239]

[240]

[241]
[242]
243

[244]

[245]
[246]

[247]

Chetan Choppali Sudarshan, Nikhil Matkar, Sarma Vrudhula, Sachin S Sapatnekar, and
Vidya A Chhabria. Eco-chip: Estimation of carbon footprint of chiplet-based architectures
for sustainable vlsi. In 2024 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 671-685. IEEE, 2024.

Billy Tallis. Micron 3d nand status update. https://www.anandtech.com/show/10028/
micron-3d-nand-status-update, .

Billy Tallis. 2021 nand flash updates from isscc: The leaning towers of tlc and qlc. https:
//www.anandtech.com/show/16491/flash-memory-at-isscc-2021, .

Chungiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott Michelson,
Thawan Kooburat, Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long Cheng, Ben
Christensen, Alex Gartrell, Maxim Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuo-
mas Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan, and Peter Zhang.
Twine: A unified cluster management system for shared infrastructure. In USENIX OSDI.,
2020.

Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li. RIPQ: advanced photo
caching on flash for facebook. In USENIX FAST, 2015.

Swamit Tannu and Prashant J Nair. The Dirty Secret of SSDs: Embodied Carbon. In
HotCarbon, 2022.

Eno Thereska, Jiri Schindler, John Bucy, Brandon Salmon, Christopher R. Lumb, and
Gregory R. Ganger. A framework for building unobtrusive disk maintenance applications.
In Proceedings of the 3rd USENIX Conference on File and Storage Technologies, FAST 04,
page 213226, USA, 2004. USENIX Association.

Eno Thereska, Austin Donnelly, and Dushyanth Narayanan. Sierra: practical power-
proportionality for data center storage. In Proceedings of the Sixth Conference on Com-
puter Systems, EuroSys ’11, page 169-182, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450306348. doi: 10.1145/1966445.1966461. URL
https://doi.org/10.1145/1966445.1966461.

Amanda Tomlinson and George Porter. Something Old, Something New: Extending the
Life of CPUs in Datacenters. In HotCarbon, 2022.

Ted Tso. Aligning filesystems to an ssd’s erase block size. https://tytso.livejournal.
com/2009/02/20/.

Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of the
facebook social graph. arXiv preprint arXiv:1111.4503, 2011.

Benny Van Houdt. A mean field model for a class of garbage collection algorithms in
flash-based solid state drives. ACM SIGMETRICS Performance Evaluation Review, 41(1):
191-202, 2013.

Francisco Velazquez, Kristian Lyngstgl, Tollef Fog Heen, and Jérome Renard. The Varnish
Book for Varnish 4.0. Varnish Software AS, March 2016.

Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun Park. Cache modeling
and optimization using miniature simulations. In USENIX ATC, 2017.

Haitao Wang, Zhanhuai Li, Xiao Zhang, Xiaonan Zhao, Xingsheng Zhao, Weijun Li, and
Song Jiang. OC-Cache: An Open-channel SSD Based Cache for Multi-Tenant Systems.

139

https://www.anandtech.com/show/10028/micron-3d-nand-status-update
https://www.anandtech.com/show/10028/micron-3d-nand-status-update
https://www.anandtech.com/show/16491/flash-memory-at-isscc-2021
https://www.anandtech.com/show/16491/flash-memory-at-isscc-2021
https://doi.org/10.1145/1966445.1966461
https://tytso.livejournal.com/2009/02/20/
https://tytso.livejournal.com/2009/02/20/

[248]

[249]

[250]

[251]

[252]

[253]

[254]

255

256

[257]
[258]

[259]

[260]

In 2018 IEEFE 37th International Performance Computing and Communications Conference
(IPCCC), pages 1-6, Orlando, FL, USA, November 2018. IEEE. ISBN 978-1-5386-6808-5.
doi: 10.1109/PCCC.2018.8711079.

Jaylen Wang, Udit Gupta, and Akshitha Sriraman. Peeling Back the Carbon Curtain: Car-
bon Optimization Challenges in Cloud Computing. In Workshop on Sustainable Computer
Systems, 2023.

Jaylen Wang, Udit Gupta, and Akshitha Sriraman. Giving Old Servers New Life at Hyper-
scale. In Workshop on Hot Topics in System Infrastructure, 2023.

Jaylen Wang, Udit Gupta, and Akshitha Sriraman. Characterizing Datacenter Server Gen-
erations for Lifetime Extension and Carbon Reduction. In Workshop on NetZero Carbon
Computing, 2023.

Jaylen Wang, Daniel S. Berger, Fiodar Kazhamiaka, Celine Irvene, Chaojie Zhang, Esha
Choukse, Kali Frost, Rodrigo Fonseca, Brijesh Warrier, Chetan Bansal, Jonathan Stern,
Ricardo Bianchini, and Akshitha Sriraman. Designing cloud servers for lower carbon. In
ISCA, 2024.

Qiuping Wang, Jinhong Li, Patrick P. C. Lee, Tao Ouyang, Chao Shi, and Lilong Huang.
Separating data via block invalidation time inference for write amplification reduction in
Log-Structured storage. In 20th USENIX Conference on File and Storage Technologies
(FAST 22), pages 429444, Santa Clara, CA, February 2022. USENIX Association. ISBN
978-1-939133-26-7. URL https://www.usenix.org/conference/fast22/presentation/
wang.

Rui Wang, Christopher Conrad, and Sam Shah. Using set cover to optimize a large-scale
low latency distributed graph. In USENIX HotCloud, 2013.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn.
Ceph: A scalable, High-Performance distributed file system. In 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 06). USENIX Association, 2006.

Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz Thamsen.
Let’s Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the
Cloud. In International Middleware Conference, 2021.

Roger Wood, Mason Williams, Aleksandar Kavcic, and Jim Miles. The feasibility of mag-
netic recording at 10 terabits per square inch on conventional media. IEEFE Transactions
on Magnetics, 45(2):917-923, 2009. doi: 10.1109/TMAG.2008.2010676.

Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-trie: An Ism-tree-based ultra-large
key-value store for small data items. In USENIX ATC, 2015.

Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, et al. Bluecache: A
scalable distributed flash-based key-value store. VLDB, 10(4):301-312, 2016.

Shigin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,
Andrew A. Chien, and Haryadi S. Gunawi. Tiny-tail flash: Near-perfect elimination of
garbage collection tail latencies in nand ssds. ACM Trans. Storage, 13(3), oct 2017. ISSN
1553-3077. doi: 10.1145/3121133. URL https://doi.org/10.1145/3121133.

J. Yang and Feng-Bin Sun. A comprehensive review of hard-disk drive reliability. In Annual
Reliability and Maintainability. Symposium. 1999 Proceedings (Cat. No.99CH36283), pages
403-409, 1999. doi: 10.1109/RAMS.1999.744151.

140

https://www.usenix.org/conference/fast22/presentation/wang
https://www.usenix.org/conference/fast22/presentation/wang
https://doi.org/10.1145/3121133

[261]
[262]
263

[264]

265

266
[267]

268

[269]

[270]

Juncheng Yang, Yao Yue, and Rashmi Vinayak. A large scale analysis of hundreds of
in-memory cache clusters at twitter. In USENIX OSDI, 2020.

Juncheng Yang, Yao Yue, and KV Rashmi. A large-scale analysis of hundreds of in-memory
key-value cache clusters at twitter. ACM Transactions on Storage (TOS), 17(3):1-35, 2021.

Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: a memory-efficient and scalable
in-memory key-value cache for small objects. In USENIX NSDI, 2021.

Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun, Wenwen Chen, Zhonggang Chen,
Wei Xia, Junke Li, and Kihyoun Kwon. Reducing garbage collection overhead in SSD
based on workload prediction. In 11th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 19), Renton, WA, July 2019. USENIX Association. URL https:
//www.usenix.org/conference/hotstoragel9/presentation/yang.

Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin yong Choi, Eyee Hyun
Nam, Eunji Lee, Sungjin Lee, and Bryan S. Kim. Overcoming the memory wall with CXL-
Enabled SSDs. In 2023 USENIX Annual Technical Conference (USENIX ATC 23), 2023.

Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer Wolfmeister. Cache-
Sack: Admission Optimization for Google Datacenter Flash Caches. page 17.

Yao Yue. Taming tail latency and achieving predictability. https://twitter.github.io/
pelikan/2020/benchmark-adq.html, 2020.

Yangi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou.
Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices. In In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, 2021.

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. De-indirection for flash-based ssds with nameless writes. In Proceedings of the
10th USENIX Conference on File and Storage Technologies, FAST 12, page 1, USA, 2012.
USENIX Association.

Aviad Zuck, Donald Porter, and Dan Tsafrir. Degrading data to save the planet. In Pro-
ceedings of the 19th Workshop on Hot Topics in Operating Systems, HOTOS ’23, 2023.

141

https://www.usenix.org/conference/hotstorage19/presentation/yang
https://www.usenix.org/conference/hotstorage19/presentation/yang
https://twitter.github.io/pelikan/2020/benchmark-adq.html
https://twitter.github.io/pelikan/2020/benchmark-adq.html

